These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2412914)

  • 1. Sequential expression of germ-layer specific molecules in the sea urchin embryo.
    Wessel GM; McClay DR
    Dev Biol; 1985 Oct; 111(2):451-63. PubMed ID: 2412914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo.
    Hamada M; Kiyomoto M
    Dev Growth Differ; 2003 Aug; 45(4):339-50. PubMed ID: 12950275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny and characterization of mesenchyme antigens of the sea urchin embryo.
    Tamboline CR; Burke RD
    Dev Biol; 1989 Nov; 136(1):75-86. PubMed ID: 2478404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation.
    Sherwood DR; McClay DR
    Development; 1997 Sep; 124(17):3363-74. PubMed ID: 9310331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo.
    Hertzler PL; McClay DR
    Dev Biol; 1999 Mar; 207(1):1-13. PubMed ID: 10049560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation.
    Nocente-McGrath C; Brenner CA; Ernst SG
    Dev Biol; 1989 Nov; 136(1):264-72. PubMed ID: 2680683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern formation during gastrulation in the sea urchin embryo.
    McClay DR; Armstrong NA; Hardin J
    Dev Suppl; 1992; ():33-41. PubMed ID: 1299366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo.
    Chen SW; Wessel GM
    Dev Biol; 1996 Apr; 175(1):57-65. PubMed ID: 8608869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo.
    Gross JM; Peterson RE; Wu SY; McClay DR
    Development; 2003 May; 130(9):1989-99. PubMed ID: 12642501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA.
    Wessel GM; Goldberg L; Lennarz WJ; Klein WH
    Dev Biol; 1989 Dec; 136(2):526-36. PubMed ID: 2583374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition.
    Wu SY; Ferkowicz M; McClay DR
    Birth Defects Res C Embryo Today; 2007 Dec; 81(4):241-52. PubMed ID: 18228256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early patterning of ABCB, ABCC, and ABCG transporters establishes unique territories of small molecule transport in embryonic mesoderm and endoderm.
    Schrankel CS; Hamdoun A
    Dev Biol; 2021 Apr; 472():115-124. PubMed ID: 33460641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos.
    Shipp LE; Hill RZ; Moy GW; Gökırmak T; Hamdoun A
    Development; 2015 Oct; 142(20):3537-48. PubMed ID: 26395488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
    Duboc V; Lapraz F; Saudemont A; Bessodes N; Mekpoh F; Haillot E; Quirin M; Lepage T
    Development; 2010 Jan; 137(2):223-35. PubMed ID: 20040489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization.
    Ransick A; Rast JP; Minokawa T; Calestani C; Davidson EH
    Dev Biol; 2002 Jun; 246(1):132-47. PubMed ID: 12027439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development.
    Miller JR; McClay DR
    Dev Biol; 1997 Dec; 192(2):323-39. PubMed ID: 9441671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.