These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 24129194)

  • 1. Evaluation of bacterial motility from non-Gaussianity of finite-sample trajectories using the large deviation principle.
    Hanasaki I; Kawano S
    J Phys Condens Matter; 2013 Nov; 25(46):465103. PubMed ID: 24129194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasielastic light scattering from migrating chemotactic bands of Escherichia coli. II. Analysis of anisotropic bacterial motions.
    Wang PC; Chen SH
    Biophys J; 1981 Oct; 36(1):203-19. PubMed ID: 7025930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape.
    Locsei JT; Pedley TJ
    Bull Math Biol; 2009 Jul; 71(5):1089-116. PubMed ID: 19198954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics?
    Cates ME
    Rep Prog Phys; 2012 Apr; 75(4):042601. PubMed ID: 22790505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Langevin equations for the run-and-tumble of swimming bacteria.
    Fier G; Hansmann D; Buceta RC
    Soft Matter; 2018 May; 14(19):3945-3954. PubMed ID: 29736534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of bacterial run and tumble motility parameters through trajectory analysis.
    Liang X; Lu N; Chang LC; Nguyen TH; Massoudieh A
    J Contam Hydrol; 2018 Apr; 211():26-38. PubMed ID: 29606374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Diffusion Approximation Based on Renewal Processes with Applications to Strongly Biased Run-Tumble Motion.
    Thygesen UH
    Bull Math Biol; 2016 Mar; 78(3):556-79. PubMed ID: 27012850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating single cell motility with population growth dynamics for flagellated bacteria.
    Arora S; Bhat V; Mittal A
    Biotechnol Bioeng; 2007 Aug; 97(6):1644-9. PubMed ID: 17274070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring the Chemotactic Strategy of P. putida and E. coli Using Modified Kramers-Moyal Coefficients.
    Pohl O; Hintsche M; Alirezaeizanjani Z; Seyrich M; Beta C; Stark H
    PLoS Comput Biol; 2017 Jan; 13(1):e1005329. PubMed ID: 28114420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle diffusion in a quasi-two-dimensional bacterial bath.
    Wu XL; Libchaber A
    Phys Rev Lett; 2000 Mar; 84(13):3017-20. PubMed ID: 11019000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling run-and-tumble chemotaxis in a shear flow.
    Bearon RN; Pedley TJ
    Bull Math Biol; 2000 Jul; 62(4):775-91. PubMed ID: 10938632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dispersal of an initial concentration of motile bacteria.
    Thonemann PC; Evans CJ
    J Gen Microbiol; 1976 Jan; 92(1):25-31. PubMed ID: 1107484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic analysis of a Brownian ratchet model for actin-based motility.
    Qian H
    Mech Chem Biosyst; 2004 Dec; 1(4):267-78. PubMed ID: 16783923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-elastic light scattering from migrating chemotactic bands of Escherichia coli. III. Studies of band formation propagation and motility in oxygen and serine substrates.
    Wang PC; Chen SH
    Biophys J; 1986 Jun; 49(6):1205-14. PubMed ID: 3087435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial motility patterns reveal importance of exploitation over exploration in marine microhabitats. Part I: theory.
    Xie L; Wu XL
    Biophys J; 2014 Oct; 107(7):1712-20. PubMed ID: 25296325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stochastic model for directional changes of swimming bacteria.
    Fier G; Hansmann D; Buceta RC
    Soft Matter; 2017 May; 13(18):3385-3394. PubMed ID: 28429013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Running and tumbling with E. coli in polymeric solutions.
    Patteson AE; Gopinath A; Goulian M; Arratia PE
    Sci Rep; 2015 Oct; 5():15761. PubMed ID: 26507950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis.
    Saragosti J; Silberzan P; Buguin A
    PLoS One; 2012; 7(4):e35412. PubMed ID: 22530021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Bacterial motion in porous media].
    Zaval'skiĭ LIu; Voloshin AG
    Mikrobiologiia; 2003; 72(3):414-8. PubMed ID: 12901019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of diffusion anisotropy due to particle asymmetry from single-particle tracking of Brownian motion by the large-deviation principle.
    Hanasaki I; Isono Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051134. PubMed ID: 23004730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.