BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24129356)

  • 1. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis.
    Liu J; Ma S; Wei Q; Jia L; Yu B; Wang D; Zhou F
    Nanoscale; 2013 Dec; 5(23):11894-901. PubMed ID: 24129356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol.
    Fan CM; Zhang LF; Wang SS; Wang DH; Lu LQ; Xu AW
    Nanoscale; 2012 Nov; 4(21):6835-40. PubMed ID: 23023220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties.
    Zhu C; Han L; Hu P; Dong S
    Nanoscale; 2012 Mar; 4(5):1641-6. PubMed ID: 22286065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts.
    Zhang Z; Sèbe G; Wang X; Tam KC
    Carbohydr Polym; 2018 Feb; 182():61-68. PubMed ID: 29279126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids.
    Liu W; Yang X; Huang W
    J Colloid Interface Sci; 2006 Dec; 304(1):160-5. PubMed ID: 17007867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4.
    Lin C; Tao K; Hua D; Ma Z; Zhou S
    Molecules; 2013 Oct; 18(10):12609-20. PubMed ID: 24126378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Half-encapsulated Au nanoparticles by nano iron oxide: promoted performance of the aerobic oxidation of 1-phenylethanol.
    Zhao J; Liu H; Ye S; Cui Y; Xue N; Peng L; Guo X; Ding W
    Nanoscale; 2013 Oct; 5(20):9546-52. PubMed ID: 23978992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts.
    Seh ZW; Liu S; Zhang SY; Shah KW; Han MY
    Chem Commun (Camb); 2011 Jun; 47(23):6689-91. PubMed ID: 21562662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: preparation and catalysis.
    Gao L; Nishikata T; Kojima K; Chikama K; Nagashima H
    Chem Asian J; 2013 Dec; 8(12):3152-63. PubMed ID: 24115377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The significant impact of polydopamine on the catalytic performance of the carried Au nanoparticles.
    Ma A; Xie Y; Xu J; Zeng H; Xu H
    Chem Commun (Camb); 2015 Jan; 51(8):1469-71. PubMed ID: 25494408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol.
    Zhang J; Chen G; Guay D; Chaker M; Ma D
    Nanoscale; 2014 Feb; 6(4):2125-30. PubMed ID: 24217271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy to improve gold nanoparticles loading efficiency on defect-free high silica ZSM-5 zeolite for the reduction of nitrophenols.
    He J; Lai C; Qin L; Li B; Liu S; Jiao L; Fu Y; Huang D; Li L; Zhang M; Liu X; Yi H; Chen L; Li Z
    Chemosphere; 2020 Oct; 256():127083. PubMed ID: 32464359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity.
    Zheng J; Dong Y; Wang W; Ma Y; Hu J; Chen X; Chen X
    Nanoscale; 2013 Jun; 5(11):4894-901. PubMed ID: 23624783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of aluminum oxide supported fluorescent gold nanodots for the detection of silver ions.
    Chen PC; Yeh TY; Ou CM; Shih CC; Chang HT
    Nanoscale; 2013 Jun; 5(11):4691-5. PubMed ID: 23636566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N,N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol.
    Yamamoto H; Yano H; Kouchi H; Obora Y; Arakawa R; Kawasaki H
    Nanoscale; 2012 Jul; 4(14):4148-54. PubMed ID: 22422276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Au
    Mora-Tamez L; Esquivel-Peña V; Ocampo AL; Rodríguez de San Miguel E; Grande D; de Gyves J
    ChemSusChem; 2017 Apr; 10(7):1482-1493. PubMed ID: 28063203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymeric carbon nitride/mesoporous silica composites as catalyst support for Au and Pt nanoparticles.
    Xiao P; Zhao Y; Wang T; Zhan Y; Wang H; Li J; Thomas A; Zhu J
    Chemistry; 2014 Mar; 20(10):2872-8. PubMed ID: 24497094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity.
    Sen IK; Maity K; Islam SS
    Carbohydr Polym; 2013 Jan; 91(2):518-28. PubMed ID: 23121940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids.
    Li S; Guo S; Yang H; Gou G; Ren R; Li J; Dong Z; Jin J; Ma J
    J Hazard Mater; 2014 Apr; 270():11-7. PubMed ID: 24531368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.