These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24129391)

  • 41. Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models.
    Song H; Yuan X; Tang X
    BMC Ophthalmol; 2016 Jan; 16():9. PubMed ID: 26754111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region.
    Yust BG; Mimun LC; Sardar DK
    Lasers Med Sci; 2012 Mar; 27(2):413-22. PubMed ID: 21556925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical quality of the ocular lens of the sea lamprey (Petromyzon marinus) during the mature and transformer periods of life.
    Bantseev V; Auclair F; Dubuc R; Sivak JG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jun; 191(6):505-9. PubMed ID: 15818479
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formulation of light focusing through a plano-convex spherical lens in wave optics.
    Guo W
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jul; 28(7):1496-9. PubMed ID: 21734750
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Model for predicting the optical performance of the eye in refractive surgery.
    Patel S; Marshall J; Fitzke FW
    Refract Corneal Surg; 1993; 9(5):366-75. PubMed ID: 8241041
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling human eye aberrations and their compensation for high-resolution retinal imaging.
    Zhu L; Bartsch DU; Freeman WR; Sun PC; Fainman Y
    Optom Vis Sci; 1998 Nov; 75(11):827-39. PubMed ID: 9848838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational model of the effect of light scattering from cataracts in the human eye.
    Kelly-Pérez I; Bruce NC; Berriel-Valdos LR; Werner A; Delgado Atencio JA
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2585-94. PubMed ID: 24323020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of compensation of aberrations in the human eye.
    Tabernero J; Benito A; Alcón E; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3274-83. PubMed ID: 17912320
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of optical parameters of the porcine eye and development of a simulated model.
    Regal S; O'Connor D; Brige P; Delattre R; Djenizian T; Ramuz M
    J Biophotonics; 2019 Nov; 12(11):e201800398. PubMed ID: 31251453
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ABCD matrix of the human lens gradient-index profile: applicability of the calculation methods.
    Díaz JA
    Appl Opt; 2008 Jan; 47(2):195-205. PubMed ID: 18188201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A wide-angle gradient index optical model of the crystalline lens and eye of the octopus.
    Jagger WS; Sands PJ
    Vision Res; 1999 Aug; 39(17):2841-52. PubMed ID: 10492814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye.
    Bernstein PS; Khachik F; Carvalho LS; Muir GJ; Zhao DY; Katz NB
    Exp Eye Res; 2001 Mar; 72(3):215-23. PubMed ID: 11180970
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens.
    Acosta E; Vazquez D; Garner L; Smith G
    J Opt Soc Am A Opt Image Sci Vis; 2005 Mar; 22(3):424-33. PubMed ID: 15770979
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.
    Maceo Heilman B; Manns F; de Castro A; Durkee H; Arrieta E; Marcos S; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1743-50. PubMed ID: 25670492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Embryonic lens of the human eye as an optical structure.
    Sivak JG; Dovrat A
    Am J Optom Physiol Opt; 1987 Aug; 64(8):599-603. PubMed ID: 3661670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Digital holographic testing of biconvex lenses.
    Chhaniwal VK; Kihiko JM; Dubey S; Shearon G; Javidi B; Anand A
    Appl Opt; 2013 Dec; 52(36):8714-22. PubMed ID: 24513936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diurnal fluctuations and developmental changes in ocular dimensions and optical aberrations in young chicks.
    Tian Y; Wildsoet CF
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):4168-78. PubMed ID: 16936138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical plasticity in fish lenses.
    Kröger RH
    Prog Retin Eye Res; 2013 May; 34():78-88. PubMed ID: 23262260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The change of spherical aberration during accommodation and its effect on the accommodation response.
    López-Gil N; Fernández-Sánchez V
    J Vis; 2010 Nov; 10(13):12. PubMed ID: 21075837
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Achromatizing the human eye.
    Bradley A; Zhang XX; Thibos LN
    Optom Vis Sci; 1991 Aug; 68(8):608-16. PubMed ID: 1923337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.