These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Pressure-assisted low-temperature sintering for paper-based writing electronics. Xu LY; Yang GY; Jing HY; Wei J; Han YD Nanotechnology; 2013 Sep; 24(35):355204. PubMed ID: 23940106 [TBL] [Abstract][Full Text] [Related]
8. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink. Lee DG; Kim DK; Moon YJ; Moon SJ Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285 [TBL] [Abstract][Full Text] [Related]
9. Nano oxide intermediate layer assisted room temperature sintering of ink-jet printed silver nanoparticles pattern. Liu Z; Ji H; Yuan Q; Ma X; Feng H; Zhao W; Wei J; Xu C; Li M Nanotechnology; 2019 Dec; 30(49):495302. PubMed ID: 31480026 [TBL] [Abstract][Full Text] [Related]
10. Conductive inks with a "built-in" mechanism that enables sintering at room temperature. Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563 [TBL] [Abstract][Full Text] [Related]
11. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics. Chung WH; Hwang HJ; Lee SH; Kim HS Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030 [TBL] [Abstract][Full Text] [Related]
12. Layer Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering. Reenaers D; Marchal W; Biesmans I; Nivelle P; D'Haen J; Deferme W Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32392730 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786 [TBL] [Abstract][Full Text] [Related]
14. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits. Gu W; Yuan W; Zhong T; Wu X; Zhou C; Lin J; Cui Z RSC Adv; 2018 Aug; 8(53):30215-30222. PubMed ID: 35546861 [TBL] [Abstract][Full Text] [Related]
15. The characteristic variations of inkjet-printed silver nanoparticle ink during furnace sintering. Hwang JY; Moon SJ J Nanosci Nanotechnol; 2013 Sep; 13(9):6145-9. PubMed ID: 24205617 [TBL] [Abstract][Full Text] [Related]
16. All-printed multiplexed electrocatalytic biosensors with rationally designed nanoparticle inks. Li X; Yang M; Rao A; Su Y; Yang T; Ye Y; Wang J; Pan S; Chen F; Wang B; Luo Z Nanotechnology; 2023 May; 34(32):. PubMed ID: 37156233 [TBL] [Abstract][Full Text] [Related]
17. The effect of temperature on the electrical properties of inkjet-printed silver nanoparticle ink during electrical sintering. Moon SJ J Nanosci Nanotechnol; 2013 Sep; 13(9):6174-8. PubMed ID: 24205623 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink. Feng F; Hong H; Gao X; Ren T; Ma Y; Feng P Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683763 [TBL] [Abstract][Full Text] [Related]
20. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics. Vaseem M; McKerricher G; Shamim A ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]