BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24129403)

  • 1. The influence of paper coating content on room temperature sintering of silver nanoparticle ink.
    Andersson H; Manuilskiy A; Lidenmark C; Gao J; Öhlund T; Forsberg S; Örtegren J; Schmidt W; Nilsson HE
    Nanotechnology; 2013 Nov; 24(45):455203. PubMed ID: 24129403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.
    Mavuri A; Mayes AG; Alexander MS
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-facilitated nanoparticle sintering and component interconnection procedure.
    Allen M; Leppäniemi J; Vilkman M; Alastalo A; Mattila T
    Nanotechnology; 2010 Nov; 21(47):475204. PubMed ID: 21030761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sintering Inhibition of Silver Nanoparticle Films via AgCl Nanocrystal Formation.
    Öhlund T; Hummelgård M; Olin H
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28817099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-assisted low-temperature sintering for paper-based writing electronics.
    Xu LY; Yang GY; Jing HY; Wei J; Han YD
    Nanotechnology; 2013 Sep; 24(35):355204. PubMed ID: 23940106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano oxide intermediate layer assisted room temperature sintering of ink-jet printed silver nanoparticles pattern.
    Liu Z; Ji H; Yuan Q; Ma X; Feng H; Zhao W; Wei J; Xu C; Li M
    Nanotechnology; 2019 Dec; 30(49):495302. PubMed ID: 31480026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics.
    Chung WH; Hwang HJ; Lee SH; Kim HS
    Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering.
    Reenaers D; Marchal W; Biesmans I; Nivelle P; D'Haen J; Deferme W
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32392730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits.
    Gu W; Yuan W; Zhong T; Wu X; Zhou C; Lin J; Cui Z
    RSC Adv; 2018 Aug; 8(53):30215-30222. PubMed ID: 35546861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.
    Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y
    Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The characteristic variations of inkjet-printed silver nanoparticle ink during furnace sintering.
    Hwang JY; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6145-9. PubMed ID: 24205617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-printed multiplexed electrocatalytic biosensors with rationally designed nanoparticle inks.
    Li X; Yang M; Rao A; Su Y; Yang T; Ye Y; Wang J; Pan S; Chen F; Wang B; Luo Z
    Nanotechnology; 2023 May; 34(32):. PubMed ID: 37156233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of temperature on the electrical properties of inkjet-printed silver nanoparticle ink during electrical sintering.
    Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6174-8. PubMed ID: 24205623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Investigation of Novel, Controlled Low-Temperature Sintering Processes for Inkjet Printed Silver Nanoparticle Ink.
    Chen Z; Gengenbach U; Koker L; Huang L; Mach TP; Reichert KM; Thelen R; Ungerer M
    Small; 2024 May; 20(21):e2306865. PubMed ID: 38126669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink.
    Feng F; Hong H; Gao X; Ren T; Ma Y; Feng P
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.
    Vaseem M; McKerricher G; Shamim A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.