BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 24129793)

  • 1. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization.
    Keddie DJ
    Chem Soc Rev; 2014 Jan; 43(2):496-505. PubMed ID: 24129793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward living radical polymerization.
    Moad G; Rizzardo E; Thang SH
    Acc Chem Res; 2008 Sep; 41(9):1133-42. PubMed ID: 18700787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino-acid-based block copolymers by RAFT polymerization.
    Mori H; Endo T
    Macromol Rapid Commun; 2012 Jul; 33(13):1090-107. PubMed ID: 22508409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RAFT polymerization and some of its applications.
    Moad G; Rizzardo E; Thang SH
    Chem Asian J; 2013 Aug; 8(8):1634-44. PubMed ID: 23606667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures.
    McCormick CL; Lowe AB
    Acc Chem Res; 2004 May; 37(5):312-25. PubMed ID: 15147172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using RAFT Polymerization Methodologies to Create Branched and Nanogel-Type Copolymers.
    Skandalis A; Sentoukas T; Selianitis D; Balafouti A; Pispas S
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers.
    Bauri K; Roy SG; Pant S; De P
    Langmuir; 2013 Feb; 29(8):2764-74. PubMed ID: 23346856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery.
    York AW; Kirkland SE; McCormick CL
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1018-36. PubMed ID: 18403044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic RAFT polymerization using ppm concentrations of organic acid.
    Uchiyama M; Satoh K; Kamigaito M
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1924-8. PubMed ID: 25511364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT).
    Fairbanks BD; Gunatillake PA; Meagher L
    Adv Drug Deliv Rev; 2015 Aug; 91():141-52. PubMed ID: 26050529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoenzymatic synthesis of polymeric materials using lipases as catalysts: a review.
    Yang Y; Zhang J; Wu D; Xing Z; Zhou Y; Shi W; Li Q
    Biotechnol Adv; 2014; 32(3):642-51. PubMed ID: 24768887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of polypeptide block copolymer hybrids by the combination of N-carboxyanhydride polymerization and RAFT.
    Jacobs J; Gathergood N; Heise A
    Macromol Rapid Commun; 2013 Aug; 34(16):1325-9. PubMed ID: 23893401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Well-Defined Polybenzamide-block-Polystyrene by Combination of Chain-Growth Condensation Polymerization and RAFT Polymerization.
    Masukawa T; Yokoyama A; Yokozawa T
    Macromol Rapid Commun; 2009 Aug; 30(16):1413-8. PubMed ID: 21638399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Poly(methacrylic acid)-
    Oral I; Grossmann L; Fedorenko E; Struck J; Abetz V
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphosphonate-Based Macromolecular RAFT-CTA Enables the Synthesis of Well-Defined Block Copolymers Using Vinyl Monomers.
    Resendiz-Lara DA; Wurm FR
    ACS Macro Lett; 2021 Oct; 10(10):1273-1279. PubMed ID: 35549040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced synthesis of multiblock copolymers
    Antonopoulou MN; Truong NP; Anastasaki A
    Chem Sci; 2024 Mar; 15(13):5019-5026. PubMed ID: 38550686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot synthesis of block copolymers in supercritical carbon dioxide: a simple versatile route to nanostructured microparticles.
    Jennings J; Beija M; Richez AP; Cooper SD; Mignot PE; Thurecht KJ; Jack KS; Howdle SM
    J Am Chem Soc; 2012 Mar; 134(10):4772-81. PubMed ID: 22309892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of temperature-responsive heterobifunctional block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide).
    You YZ; Oupický D
    Biomacromolecules; 2007 Jan; 8(1):98-105. PubMed ID: 17206794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of various glycopolymer architectures via RAFT polymerization: from block copolymers to stars.
    Bernard J; Hao X; Davis TP; Barner-Kowollik C; Stenzel MH
    Biomacromolecules; 2006 Jan; 7(1):232-8. PubMed ID: 16398520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy)ethyl phosphorylcholine.
    Yu B; Lowe AB; Ishihara K
    Biomacromolecules; 2009 Apr; 10(4):950-8. PubMed ID: 19243090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.