These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 24129832)
1. 3-D PLLA scaffolds formation by a supercritical freeze extraction assisted process. Cardea S; Baldino L; Pisanti P; Reverchon E J Mater Sci Mater Med; 2014 Feb; 25(2):355-62. PubMed ID: 24129832 [TBL] [Abstract][Full Text] [Related]
2. 3D PLLA/ibuprofen composite scaffolds obtained by a supercritical fluids assisted process. Cardea S; Baldino L; Scognamiglio M; Reverchon E J Mater Sci Mater Med; 2014 Apr; 25(4):989-98. PubMed ID: 24366467 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterization of porous poly(L-lactide) scaffolds using solid-liquid phase separation. Goh YQ; Ooi CP J Mater Sci Mater Med; 2008 Jun; 19(6):2445-52. PubMed ID: 18219558 [TBL] [Abstract][Full Text] [Related]
4. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
5. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505 [TBL] [Abstract][Full Text] [Related]
6. FEM modeling of the reinforcement mechanism of Hydroxyapatite in PLLA scaffolds produced by supercritical drying, for Tissue Engineering applications. Baldino L; Naddeo F; Cardea S; Naddeo A; Reverchon E J Mech Behav Biomed Mater; 2015 Nov; 51():225-36. PubMed ID: 26275485 [TBL] [Abstract][Full Text] [Related]
7. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent. Li S; Chen X; Li M Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464 [TBL] [Abstract][Full Text] [Related]
8. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide. Yang DZ; Chen AZ; Wang SB; Li Y; Tang XL; Wu YJ Biomed Mater; 2015 Jun; 10(3):035015. PubMed ID: 26107415 [TBL] [Abstract][Full Text] [Related]
9. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
10. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. Lou T; Wang X; Song G Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
13. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574 [TBL] [Abstract][Full Text] [Related]
14. Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. Ma Z; Gao C; Gong Y; Shen J J Biomed Mater Res B Appl Biomater; 2003 Oct; 67(1):610-7. PubMed ID: 14528458 [TBL] [Abstract][Full Text] [Related]
15. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Zhang R; Ma PX J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949 [TBL] [Abstract][Full Text] [Related]
16. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Frydrych M; Román S; MacNeil S; Chen B Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230 [TBL] [Abstract][Full Text] [Related]
19. Initial study on fibers and coatings for the fabrication of bioscaffolds. Pantojas VM; Velez E; Hernández D; Otaño W P R Health Sci J; 2009 Sep; 28(3):258-65. PubMed ID: 19715118 [TBL] [Abstract][Full Text] [Related]
20. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Ho MH; Kuo PY; Hsieh HJ; Hsien TY; Hou LT; Lai JY; Wang DM Biomaterials; 2004 Jan; 25(1):129-38. PubMed ID: 14580916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]