BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24130110)

  • 21. Posttranscriptional regulation of maternal Pou5f1/Oct4 during mouse oogenesis and early embryogenesis.
    Takada Y; Iyyappan R; Susor A; Kotani T
    Histochem Cell Biol; 2020 Dec; 154(6):609-620. PubMed ID: 32930837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of zebrafish epiboly: A current view.
    Bruce AEE; Heisenberg CP
    Curr Top Dev Biol; 2020; 136():319-341. PubMed ID: 31959293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promoter activity and regulation of the Pou5f1 homolog from a teleost, Nile tilapia.
    Jing W; Xiaohuan H; Zhenhua F; Zhuo Y; Fan D; Wenjing T; Linyan Z; Deshou W
    Gene; 2018 Feb; 642():277-283. PubMed ID: 29155325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zebrafish limb development is triggered by a retinoic acid signal during gastrulation.
    Grandel H; Brand M
    Dev Dyn; 2011 May; 240(5):1116-26. PubMed ID: 21509893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of regulators of germ layer morphogenesis using proteomics in zebrafish.
    Link V; Carvalho L; Castanon I; Stockinger P; Shevchenko A; Heisenberg CP
    J Cell Sci; 2006 May; 119(Pt 10):2073-83. PubMed ID: 16638810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nile tilapia (Oreochromis niloticus) Nanog co-expression with Pou5f3, transcriptional regulation and biological activity in embyonic development and embryonic cells.
    Bai X; Jianeng L; Zhang Z; Qu X; Tao W; Zhou L; Wang D; Wei J
    Comp Biochem Physiol B Biochem Mol Biol; 2023; 264():110812. PubMed ID: 36396033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative imaging reveals real-time Pou5f3-Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish.
    Perez-Camps M; Tian J; Chng SC; Sem KP; Sudhaharan T; Teh C; Wachsmuth M; Korzh V; Ahmed S; Reversade B
    Elife; 2016 Sep; 5():. PubMed ID: 27684073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular cloning and expression of Octamer-binding transcription factor (Oct4) in the large yellow croaker, Larimichthys crocea.
    Jiang Y; Han K; Chen S; Cai M; Wang Y; Zhang Z
    Gene Expr Patterns; 2018 Jan; 27():16-30. PubMed ID: 28987646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The POU-er of gene nomenclature.
    Frankenberg SR; Frank D; Harland R; Johnson AD; Nichols J; Niwa H; Schöler HR; Tanaka E; Wylie C; Brickman JM
    Development; 2014 Aug; 141(15):2921-3. PubMed ID: 25053425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro analysis of the transcriptional regulatory mechanism of zebrafish pou5f3.
    Kobayashi K; Khan A; Ikeda M; Nakamoto A; Maekawa M; Yamasu K
    Exp Cell Res; 2018 Mar; 364(1):28-41. PubMed ID: 29366809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rac1 signalling coordinates epiboly movement by differential regulation of actin cytoskeleton in zebrafish.
    Li YL; Shao M; Shi DL
    Biochem Biophys Res Commun; 2017 Aug; 490(3):1059-1065. PubMed ID: 28668387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression and regulation of the zinc finger transcription factor Churchill during zebrafish development.
    Londin ER; Mentzer L; Gates KP; Sirotkin HI
    Gene Expr Patterns; 2007 Jun; 7(6):645-50. PubMed ID: 17521969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maternal factors in zebrafish development.
    Pelegri F
    Dev Dyn; 2003 Nov; 228(3):535-54. PubMed ID: 14579391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The dual role of OCT4].
    Stefanovic S; Pucéat M
    Med Sci (Paris); 2010 Apr; 26(4):411-6. PubMed ID: 20412747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The primary role of zebrafish
    Gagnon JA; Obbad K; Schier AF
    Development; 2018 Jan; 145(1):. PubMed ID: 29180571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular genetics of axis formation in zebrafish.
    Schier AF; Talbot WS
    Annu Rev Genet; 2005; 39():561-613. PubMed ID: 16285872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zebrafish gastrulation: cell movements, signals, and mechanisms.
    Rohde LA; Heisenberg CP
    Int Rev Cytol; 2007; 261():159-92. PubMed ID: 17560282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Embryonic EMTs intercepted by p38.
    Raftopoulou M
    Nat Cell Biol; 2006 Jul; 8(7):654. PubMed ID: 16820775
    [No Abstract]   [Full Text] [Related]  

  • 39. Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer.
    Yamashita S; Miyagi C; Fukada T; Kagara N; Che YS; Hirano T
    Nature; 2004 May; 429(6989):298-302. PubMed ID: 15129296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation.
    Ramel MC; Buckles GR; Baker KD; Lekven AC
    Dev Biol; 2005 Nov; 287(2):237-48. PubMed ID: 16216234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.