These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 2413058)

  • 1. Lymphocyte membrane potential and Ca2+-sensitive potassium channels described by oxonol dye fluorescence measurements.
    Wilson HA; Chused TM
    J Cell Physiol; 1985 Oct; 125(1):72-81. PubMed ID: 2413058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-sensitive cyanine dye fluorescence signals in lymphocytes: plasma membrane and mitochondrial components.
    Wilson HA; Seligmann BE; Chused TM
    J Cell Physiol; 1985 Oct; 125(1):61-71. PubMed ID: 2413057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of calmodulin blockers on membrane potential, potassium permeability and lymphocyte mitogenesis].
    Gukovskaia AS; Zinchenko VP; Astashkin EI
    Biokhimiia; 1985 May; 50(5):786-94. PubMed ID: 3924125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid factor (bVLF) from bovine vitreous body evokes in EGFR-T17 cells a Ca2+-dependent K+ current associated with inositol 1,4,5-trisphosphate-independent Ca2+ mobilization.
    Camiña JP; Diaz-Rodriguez E; Harks EG; Theuvenet AP; Ypey DL; Casanueva FF
    J Cell Physiol; 2003 Apr; 195(1):108-18. PubMed ID: 12599214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Commitment to differentiation of murine erythroleukemia cells involves a modulated plasma membrane depolarization through Ca2+-activated K+ channels.
    Arcangeli A; Ricupero L; Olivotto M
    J Cell Physiol; 1987 Sep; 132(3):387-400. PubMed ID: 2443510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of quinine, a blocker of Ca2+-activated K+-channels, on lymphocyte activation by mitogens].
    Riabichenko VV; Gukovskaia AS; Nikolaeva IS; Astashkin EI
    Tsitologiia; 1986 Jan; 28(1):91-5. PubMed ID: 2420047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of membrane potential in T lymphocytes subpopulations using flow cytometry.
    Mello de Queiroz F; Ponte CG; Bonomo A; Vianna-Jorge R; Suarez-Kurtz G
    BMC Immunol; 2008 Nov; 9():63. PubMed ID: 18980671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain.
    Bartschat DK; Blaustein MP
    J Physiol; 1985 Apr; 361():441-57. PubMed ID: 2580982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon.
    Lang RJ; Watson MJ
    Br J Pharmacol; 1998 Feb; 123(3):505-17. PubMed ID: 9504392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of Ca2+-ionophore and concanavalin A on potassium permeability and membrane potential of thymocytes].
    Gukovskaia AS; Zinchenko VP
    Biofizika; 1985; 30(5):919-20. PubMed ID: 3931697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-activated ionic currents in goldfish pituitary cells.
    Price CJ; Goldberg JI; Chang JP
    Gen Comp Endocrinol; 1993 Oct; 92(1):16-30. PubMed ID: 7505247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loperamide blocks high-voltage-activated calcium channels and N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurons.
    Church J; Fletcher EJ; Abdel-Hamid K; MacDonald JF
    Mol Pharmacol; 1994 Apr; 45(4):747-57. PubMed ID: 8183255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion channels, Ca2+ signaling, and reporter gene expression in antigen-specific mouse T cells.
    Kerschbaum HH; Negulescu PA; Cahalan MD
    J Immunol; 1997 Aug; 159(4):1628-38. PubMed ID: 9257822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of the Ca ionophore A-23187 on the plasmatic and mitochondrial potentials of the brain synaptosomes in rats: fluorescence measurements].
    Tiniakova LR; Antonikov IM; Glebov RN
    Biull Eksp Biol Med; 1989 Jun; 107(6):678-80. PubMed ID: 2551414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The measurement of the macrophage membrane potential by using an oxonol fluorescent probe].
    Gamaleĭ IA; Kaulin AB; Kirpichnikova KM
    Tsitologiia; 1991; 33(6):60-6. PubMed ID: 1821491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of voltage sensitive potassium channels and generation of membrane potential by sodium potassium ATPase in murine T lymphocytes.
    Ishida Y; Chused TM
    J Immunol; 1993 Jul; 151(2):610-20. PubMed ID: 8393035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-activated potassium channels in human platelets.
    Fine BP; Hansen KA; Salcedo JR; Aviv A
    Proc Soc Exp Biol Med; 1989 Nov; 192(2):109-13. PubMed ID: 2510175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymphocyte membrane potential assessed with fluorescent probes.
    Rink TJ; Montecucco C; Hesketh TR; Tsien RY
    Biochim Biophys Acta; 1980; 595(1):15-30. PubMed ID: 6153065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane potential, anion and cation conductances in Ehrlich ascites tumor cells.
    Lambert IH; Hoffmann EK; Jørgensen F
    J Membr Biol; 1989 Oct; 111(2):113-31. PubMed ID: 2482360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate, Ca2+-activated K+ and Cl- transport pathways in Ehrlich ascites tumor cells.
    Hoffmann EK; Lambert IH; Simonsen LO
    J Membr Biol; 1986; 91(3):227-44. PubMed ID: 2427725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.