These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 24131062)
1. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects. Emfietzoglou D; Kyriakou I; Garcia-Molina R; Abril I; Nikjoo H Radiat Res; 2013 Nov; 180(5):499-513. PubMed ID: 24131062 [TBL] [Abstract][Full Text] [Related]
2. Inelastic scattering of low-energy electrons in liquid water computed from optical-data models of the Bethe surface. Emfietzoglou D; Kyriakou I; Abril I; Garcia-Molina R; Nikjoo H Int J Radiat Biol; 2012 Jan; 88(1-2):22-8. PubMed ID: 21756061 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New Model Dielectric Response Function. Emfietzoglou D; Papamichael G; Nikjoo H Radiat Res; 2017 Sep; 188(3):355-368. PubMed ID: 28650774 [TBL] [Abstract][Full Text] [Related]
4. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface. Emfietzoglou D; Nikjoo H Radiat Res; 2007 Jan; 167(1):110-20. PubMed ID: 17214512 [TBL] [Abstract][Full Text] [Related]
5. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes. Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312 [TBL] [Abstract][Full Text] [Related]
6. The effect of model approximations on single-collision distributions of low-energy electrons in liquid water. Emfietzoglou D; Nikjoo H Radiat Res; 2005 Jan; 163(1):98-111. PubMed ID: 15606313 [TBL] [Abstract][Full Text] [Related]
7. A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water. Emfietzoglou D; Garcia-Molina R; Kyriakou I; Abril I; Nikjoo H Phys Med Biol; 2009 Jun; 54(11):3451-72. PubMed ID: 19436107 [TBL] [Abstract][Full Text] [Related]
8. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice. Liljequist D Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241 [TBL] [Abstract][Full Text] [Related]
9. Semi-empirical inelastic cross sections for electron transport in liquid water. Emfietzoglou D Radiat Prot Dosimetry; 2002; 99(1-4):39-46. PubMed ID: 12194336 [TBL] [Abstract][Full Text] [Related]
10. Microdosimetry of low-energy electrons. Liamsuwan T; Emfietzoglou D; Uehara S; Nikjoo H Int J Radiat Biol; 2012 Dec; 88(12):899-907. PubMed ID: 22668077 [TBL] [Abstract][Full Text] [Related]
11. Calculations of stopping powers and inelastic mean free paths for 20 eV-20 keV electrons in 11 types of human tissue. Tan Z; Liu W Appl Radiat Isot; 2013 Dec; 82():325-31. PubMed ID: 24144616 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo simulation of the energy loss of low-energy electrons in liquid water. Emfietzoglou D; Karava K; Papamichael G; Moscovitch M Phys Med Biol; 2003 Aug; 48(15):2355-71. PubMed ID: 12953903 [TBL] [Abstract][Full Text] [Related]
13. Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blocks. de Vera P; Abril I; Garcia-Molina R Phys Chem Chem Phys; 2021 Mar; 23(9):5079-5095. PubMed ID: 33565529 [TBL] [Abstract][Full Text] [Related]
14. Modelling low energy electron and positron tracks for biomedical applications. Sanz AG; Fuss MC; Muñoz A; Blanco F; Limão-Vieira P; Brunger MJ; Buckman SJ; García G Int J Radiat Biol; 2012 Jan; 88(1-2):71-6. PubMed ID: 21923304 [TBL] [Abstract][Full Text] [Related]
15. Calculation of heavy-ion tracks in liquid water. Hamm RN; Turner JE; Ritchie RH; Wright HA Radiat Res Suppl; 1985; 8():S20-6. PubMed ID: 3003783 [TBL] [Abstract][Full Text] [Related]
16. Inelastic scattering and stopping power of low-energy electrons (0.01-10 keV) in toluene. García G; Blanco F; Grau Carles A; Grau Malonda A Appl Radiat Isot; 2004; 60(2-4):481-5. PubMed ID: 14987689 [TBL] [Abstract][Full Text] [Related]
17. Stopping power and mean free path for low-energy electrons in ten scintillators over energy range of 20-20,000 eV. Tan Z; Xia Y Appl Radiat Isot; 2012 Jan; 70(1):296-300. PubMed ID: 21880497 [TBL] [Abstract][Full Text] [Related]
18. A Monte Carlo program for the analysis of low-energy electron tracks in liquid water. Wiklund K; Fernández-Varea JM; Lind BK Phys Med Biol; 2011 Apr; 56(7):1985-2003. PubMed ID: 21364263 [TBL] [Abstract][Full Text] [Related]
19. Cross sections of electron inelastic interactions in DNA. Tan Z; Xia Y; Liu X; Zhao M; Ji Y; Li F; Huang B Radiat Environ Biophys; 2004 Sep; 43(3):173-82. PubMed ID: 15526117 [TBL] [Abstract][Full Text] [Related]
20. Dynamics and reactivity of trapped electrons on supported ice crystallites. Stähler J; Gahl C; Wolf M Acc Chem Res; 2012 Jan; 45(1):131-8. PubMed ID: 22185698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]