These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 24131062)
21. Monte-Carlo calculations of radial dose and restricted-let for protons in water. Emfietzoglou D; Karava K; Papamichael G; Moscovitch M Radiat Prot Dosimetry; 2004; 110(1-4):871-9. PubMed ID: 15353761 [TBL] [Abstract][Full Text] [Related]
22. Electron energy-loss distributions in solid, dry DNA. LaVerne JA; Pimblott SM Radiat Res; 1995 Feb; 141(2):208-15. PubMed ID: 7838960 [TBL] [Abstract][Full Text] [Related]
23. A complete dielectric response model for liquid water: a solution of the Bethe ridge problem. Emfietzoglou D; Cucinotta FA; Nikjoo H Radiat Res; 2005 Aug; 164(2):202-11. PubMed ID: 16038591 [TBL] [Abstract][Full Text] [Related]
24. Cross sections for low-energy (1-100 eV) electron elastic and inelastic scattering in amorphous ice. Michaud M; Wen A; Sanche L Radiat Res; 2003 Jan; 159(1):3-22. PubMed ID: 12492364 [TBL] [Abstract][Full Text] [Related]
25. Dose to tissue medium or water cavities as surrogate for the dose to cell nuclei at brachytherapy photon energies. Enger SA; Ahnesjö A; Verhaegen F; Beaulieu L Phys Med Biol; 2012 Jul; 57(14):4489-500. PubMed ID: 22722477 [TBL] [Abstract][Full Text] [Related]
26. Calculations of absorbed fractions in small water spheres for low-energy monoenergetic electrons and the Auger-emitting radionuclides (123)Ι and (125)Ι. Bousis C; Emfietzoglou D; Nikjoo H Int J Radiat Biol; 2012 Dec; 88(12):916-21. PubMed ID: 22348619 [TBL] [Abstract][Full Text] [Related]
27. Electron inelastic mean free path formula and CSDA-range calculation in biological compounds for low and intermediate energies. Akar A; Gümüş H; Okumuşoğlu NT Appl Radiat Isot; 2006 May; 64(5):543-50. PubMed ID: 16388951 [TBL] [Abstract][Full Text] [Related]
28. Spatial distributions of inelastic events produced by electrons in gaseous and liquid water. Paretzke HG; Turner JE; Hamm RN; Ritchie RH; Wright HA Radiat Res; 1991 Aug; 127(2):121-9. PubMed ID: 1946995 [TBL] [Abstract][Full Text] [Related]
29. Sub-keV corrections to binary encounter cross section models for electron ionization of liquid water with application to the Geant4-DNA Monte Carlo code. Margis S; Kyriakou I; Incerti S; Bordage MC; Emfietzoglou D Appl Radiat Isot; 2023 Apr; 194():110693. PubMed ID: 36731390 [TBL] [Abstract][Full Text] [Related]
30. New stopping power formula for intermediate energy electrons. Gümüş H Appl Radiat Isot; 2008 Dec; 66(12):1886-90. PubMed ID: 18586505 [TBL] [Abstract][Full Text] [Related]
31. Proton stopping cross sections of liquid water. Xu YJ; Khandelwal GS; Wilson JW Phys Rev A Gen Phys; 1985 Jul; 32(1):629-32. PubMed ID: 11540869 [TBL] [Abstract][Full Text] [Related]
32. Technical Note: Improvements in geant4 energy-loss model and the effect on low-energy electron transport in liquid water. Kyriakou I; Incerti S; Francis Z Med Phys; 2015 Jul; 42(7):3870-6. PubMed ID: 26133588 [TBL] [Abstract][Full Text] [Related]
33. Calculation of the proximity function of electrons. Dayashankar ; Prasad MA Radiat Res; 1990 Feb; 121(2):142-8. PubMed ID: 2305031 [TBL] [Abstract][Full Text] [Related]
34. Track structure: time evolution from physics to chemistry. Dingfelder M Radiat Prot Dosimetry; 2006; 122(1-4):16-21. PubMed ID: 17277326 [TBL] [Abstract][Full Text] [Related]
35. Elastic and inelastic cross sections for low-energy electron collisions with pyrimidine. Mašín Z; Gorfinkiel JD; Jones DB; Bellm SM; Brunger MJ J Chem Phys; 2012 Apr; 136(14):144310. PubMed ID: 22502521 [TBL] [Abstract][Full Text] [Related]
36. Electron stopping power and inelastic mean free path in amino acids and protein over the energy range of 20-20,000 eV. Tan Z; Xia Y; Zhao M; Liu X Radiat Environ Biophys; 2006 Jul; 45(2):135-43. PubMed ID: 16733724 [TBL] [Abstract][Full Text] [Related]
37. Elastic scattering cross section models used for Monte Carlo simulation of electron tracks in media of biological and medical interest. Liljequist D; Liamsuwan T; Nikjoo H Int J Radiat Biol; 2012 Jan; 88(1-2):29-37. PubMed ID: 21756208 [TBL] [Abstract][Full Text] [Related]
38. Electron scattering cross sections from HCN over a broad energy range (0.1-10,000 eV): Influence of the permanent dipole moment on the scattering process. Sanz AG; Fuss MC; Blanco F; Sebastianelli F; Gianturco FA; García G J Chem Phys; 2012 Sep; 137(12):124103. PubMed ID: 23020320 [TBL] [Abstract][Full Text] [Related]
39. A comparative study of dielectric response function models for liquid water. Emfietzoglou D; Nikjoo H; Pathak A Radiat Prot Dosimetry; 2006; 122(1-4):61-5. PubMed ID: 17251250 [TBL] [Abstract][Full Text] [Related]
40. Absolute scattering probabilities for subexcitation electrons in condensed H2O. Bader G; Chiasson J; Caron LG; Michaud M; Perluzzo G; Sanche L Radiat Res; 1988 Jun; 114(3):467-79. PubMed ID: 3375436 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]