These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 24131062)

  • 41. Inelastic electron interaction (attachment/ionization) with deoxyribose.
    Ptasińska S; Denifl S; Scheier P; Märk TD
    J Chem Phys; 2004 May; 120(18):8505-11. PubMed ID: 15267776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SU-E-T-489: Quantum versus Classical Trajectory Monte Carlo Simulations of Low Energy Electron Transport.
    Thomson R; Kawrakow I
    Med Phys; 2012 Jun; 39(6Part17):3817-3818. PubMed ID: 28517446
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The calculation of proton and secondary electron stopping powers in liquid water.
    Marouane A; Inchaouh J; Ouaskit S; Fathi A
    Appl Radiat Isot; 2012 Jul; 70(7):1089-94. PubMed ID: 22261088
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential and integral W-values for ionization in gaseous water under electron and proton irradiation: consistency of inelastic collision cross sections.
    La Verne JA; Mozumder A
    Radiat Res; 1992 Jul; 131(1):1-9. PubMed ID: 1320765
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elastic and inelastic low-energy electron collisions with pyrazine.
    Mašín Z; Gorfinkiel JD
    J Chem Phys; 2011 Oct; 135(14):144308. PubMed ID: 22010719
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electron inelastic mean free path theory and density functional theory resolving discrepancies for low-energy electrons in copper.
    Chantler CT; Bourke JD
    J Phys Chem A; 2014 Feb; 118(5):909-14. PubMed ID: 24450468
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Collisions of low-energy electrons with cyclohexane.
    Barbosa AS; Bettega MH
    J Chem Phys; 2014 Dec; 141(24):244307. PubMed ID: 25554151
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electron scattering by methanol and ethanol: a joint theoretical-experimental investigation.
    Lee MT; de Souza GL; Machado LE; Brescansin LM; dos Santos AS; Lucchese RR; Sugohara RT; Homem MG; Sanches IP; Iga I
    J Chem Phys; 2012 Mar; 136(11):114311. PubMed ID: 22443768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inelastic electron scattering from a helical potential: transverse polarization and the structure factor in the single scattering approximation.
    Varela S; Medina E; López F; Mujica V
    J Phys Condens Matter; 2014 Jan; 26(1):015008. PubMed ID: 24292146
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heavy ion track structure simulations in liquid water at relativistic energies.
    Dingfelder M; Jorjishvili IG; Gersh JA; Toburen LH
    Radiat Prot Dosimetry; 2006; 122(1-4):26-7. PubMed ID: 17132672
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new calculation on the stopping power and mean free path for low energy electrons in toluene over energy range of 20-10000 eV.
    Tan Z; Xia Y; Liu X; Zhao M; Zhang L
    Appl Radiat Isot; 2009 Apr; 67(4):625-9. PubMed ID: 19138526
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-energy electron penetration range in liquid water.
    Meesungnoen J; Jay-Gerin JP; Filali-Mouhim A; Mankhetkorn S
    Radiat Res; 2002 Nov; 158(5):657-60. PubMed ID: 12385644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Correlation effects of π electrons on the band structures of conjugated polymers using the self-consistent GW approximation with vertex corrections.
    Chang YW; Jin BY
    J Chem Phys; 2012 Jan; 136(2):024110. PubMed ID: 22260567
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An investigation into electron scattering from pyrazine at intermediate and high energies.
    Sanz AG; Fuss MC; Blanco F; Gorfinkiel JD; Almeida D; da Silva FF; Limão-Vieira P; Brunger MJ; García G
    J Chem Phys; 2013 Nov; 139(18):184310. PubMed ID: 24320277
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2009 Aug; 54(16):5023-38. PubMed ID: 19652289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9681-91. PubMed ID: 16686519
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Limitations (and merits) of PENELOPE as a track-structure code.
    Fernández-Varea JM; González-Muñoz G; Galassi ME; Wiklund K; Lind BK; Ahnesjö A; Tilly N
    Int J Radiat Biol; 2012 Jan; 88(1-2):66-70. PubMed ID: 21864015
    [TBL] [Abstract][Full Text] [Related]  

  • 59. EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water.
    Champion C; Le Loirec C; Stosic B
    Int J Radiat Biol; 2012 Jan; 88(1-2):54-61. PubMed ID: 22098415
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Monte Carlo track structure for radiation biology and space applications.
    Nikjoo H; Uehara S; Khvostunov IG; Cucinotta FA; Wilson WE; Goodhead DT
    Phys Med; 2001; 17 Suppl 1():38-44. PubMed ID: 11770535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.