BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24131239)

  • 1. Spectroscopic investigation of photoinduced charge-transfer processes in FTO/TiO2/N719 photoanodes with and without covalent attachment through silane-based linkers.
    Pandit B; Luitel T; Cummins DR; Thapa AK; Druffel T; Zamborini F; Liu J
    J Phys Chem A; 2013 Dec; 117(50):13513-23. PubMed ID: 24131239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent modification of photoanodes for stable dye-sensitized solar cells.
    Luitel T; Zamborini FP
    Langmuir; 2013 Nov; 29(44):13582-94. PubMed ID: 24087979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D-π-A-type, carbazole derivative with more than 5% power conversion.
    Barpuzary D; Patra AS; Vaghasiya JV; Solanki BG; Soni SS; Qureshi M
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12629-39. PubMed ID: 25029665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells.
    Chandiran AK; Abdi-Jalebi M; Nazeeruddin MK; Grätzel M
    ACS Nano; 2014 Mar; 8(3):2261-8. PubMed ID: 24552648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Situ Spectroscopic Analyses of the Dye Uptake on ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells.
    Shahzad N; Pugliese D; Shahzad MI; Tresso E
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5993-6000. PubMed ID: 26369186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoelectrochemical quantification of electron transport resistance of TiO(2) photoanodes for dye-sensitized solar cells.
    Yu H; Zhang S; Zhao H; Zhang H
    Phys Chem Chem Phys; 2010 Jul; 12(25):6625-31. PubMed ID: 20424787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.
    Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR
    J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-sensitization promoted light harvesting with a new mixed-addenda polyoxometalate [Cu(C12H8N2)2]2[V2W4O19]·4H2O in dye-sensitized solar cells.
    Xu SS; Chen WL; Wang YH; Li YG; Liu ZJ; Shan CH; Su ZM; Wang EB
    Dalton Trans; 2015 Nov; 44(42):18553-62. PubMed ID: 26443009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.
    Li Y; Pan K; Wang G; Jiang B; Tian C; Zhou W; Qu Y; Liu S; Feng L; Fu H
    Dalton Trans; 2013 Jun; 42(22):7971-9. PubMed ID: 23455429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond to millisecond studies of electron transfer processes in a donor-(π-spacer)-acceptor series of organic dyes for solar cells interacting with titania nanoparticles and ordered nanotube array films.
    Ziółek M; Cohen B; Yang X; Sun L; Paulose M; Varghese OK; Grimes CA; Douhal A
    Phys Chem Chem Phys; 2012 Feb; 14(8):2816-31. PubMed ID: 22258566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure.
    Qi J; Dang X; Hammond PT; Belcher AM
    ACS Nano; 2011 Sep; 5(9):7108-16. PubMed ID: 21815674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective.
    Jakubikova E; Bowman DN
    Acc Chem Res; 2015 May; 48(5):1441-9. PubMed ID: 25919490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer of CaF
    Wang L; Yang Z; Li YF; Yang R; Dai Z; Hu S; Sun L; Tong Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Sep; 202():76-80. PubMed ID: 29778708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron injection dynamics in high-potential porphyrin photoanodes.
    Milot RL; Schmuttenmaer CA
    Acc Chem Res; 2015 May; 48(5):1423-31. PubMed ID: 25938858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green Synthesis of Pristine and Ag-Doped TiO
    Sharif AM; Ashrafuzzaman M; Kalam A; Al-Sehemi AG; Yadav P; Tripathi B; Dubey M; Du G
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An insight into the role of oxygen vacancy in hydrogenated TiO₂ nanocrystals in the performance of dye-sensitized solar cells.
    Su T; Yang Y; Na Y; Fan R; Li L; Wei L; Yang B; Cao W
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3754-63. PubMed ID: 25621977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.
    Odobel F; Le Pleux L; Pellegrin Y; Blart E
    Acc Chem Res; 2010 Aug; 43(8):1063-71. PubMed ID: 20455541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.