These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 24131276)

  • 1. Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release.
    Basuki JS; Duong HT; Macmillan A; Erlich RB; Esser L; Akerfeldt MC; Whan RM; Kavallaris M; Boyer C; Davis TP
    ACS Nano; 2013 Nov; 7(11):10175-89. PubMed ID: 24131276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with MRI sensitivity.
    Li Y; Duong HT; Laurent S; MacMillan A; Whan RM; Elst LV; Muller RN; Hu J; Lowe A; Boyer C; Davis TP
    Adv Healthc Mater; 2015 Jan; 4(1):148-56. PubMed ID: 24985790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs).
    Chang Y; Meng X; Zhao Y; Li K; Zhao B; Zhu M; Li Y; Chen X; Wang J
    J Colloid Interface Sci; 2011 Nov; 363(1):403-9. PubMed ID: 21821262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment.
    Pan C; Liu Y; Zhou M; Wang W; Shi M; Xing M; Liao W
    Int J Nanomedicine; 2018; 13():1119-1137. PubMed ID: 29520140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting.
    Gautier J; Munnier E; Paillard A; Hervé K; Douziech-Eyrolles L; Soucé M; Dubois P; Chourpa I
    Int J Pharm; 2012 Feb; 423(1):16-25. PubMed ID: 21703340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging.
    Yang X; Grailer JJ; Rowland IJ; Javadi A; Hurley SA; Matson VZ; Steeber DA; Gong S
    ACS Nano; 2010 Nov; 4(11):6805-17. PubMed ID: 20958084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging.
    Chiang WH; Huang WC; Chang CW; Shen MY; Shih ZF; Huang YF; Lin SC; Chiu HC
    J Control Release; 2013 Jun; 168(3):280-8. PubMed ID: 23562635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalizing biodegradable dextran scaffolds using living radical polymerization: new versatile nanoparticles for the delivery of therapeutic molecules.
    Duong HT; Hughes F; Sagnella S; Kavallaris M; Macmillan A; Whan R; Hook J; Davis TP; Boyer C
    Mol Pharm; 2012 Nov; 9(11):3046-61. PubMed ID: 23078353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phasor-Fluorescence Lifetime Imaging Microscopy Analysis to Monitor Intercellular Drug Release from a pH-Sensitive Polymeric Nanocarrier.
    Zhou T; Luo T; Song J; Qu J
    Anal Chem; 2018 Feb; 90(3):2170-2177. PubMed ID: 29336550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells.
    Shalviri A; Raval G; Prasad P; Chan C; Liu Q; Heerklotz H; Rauth AM; Wu XY
    Eur J Pharm Biopharm; 2012 Nov; 82(3):587-97. PubMed ID: 22995704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging.
    Schweiger C; Pietzonka C; Heverhagen J; Kissel T
    Int J Pharm; 2011 Apr; 408(1-2):130-7. PubMed ID: 21315813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of intracellular delivery of doxorubicin from poly(lactide-co-glycolide) nanoparticles by means of fluorescence lifetime imaging and confocal Raman microscopy.
    Romero G; Qiu Y; Murray RA; Moya SE
    Macromol Biosci; 2013 Feb; 13(2):234-41. PubMed ID: 23316003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug.
    Sahoo B; Devi KS; Banerjee R; Maiti TK; Pramanik P; Dhara D
    ACS Appl Mater Interfaces; 2013 May; 5(9):3884-93. PubMed ID: 23551195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells.
    Pramod PS; Shah R; Jayakannan M
    Nanoscale; 2015 Apr; 7(15):6636-52. PubMed ID: 25797322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells.
    Dai X; Yue Z; Eccleston ME; Swartling J; Slater NK; Kaminski CF
    Nanomedicine; 2008 Mar; 4(1):49-56. PubMed ID: 18249155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy.
    Lv S; Li M; Tang Z; Song W; Sun H; Liu H; Chen X
    Acta Biomater; 2013 Dec; 9(12):9330-42. PubMed ID: 23958784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doxorubicin-conjugated β-NaYF4:Gd(3+)/Tb(3+) multifunctional, phosphor nanorods: a multi-modal, luminescent, magnetic probe for simultaneous optical and magnetic resonance imaging and an excellent pH-triggered anti-cancer drug delivery nanovehicle.
    Padhye P; Alam A; Ghorai S; Chattopadhyay S; Poddar P
    Nanoscale; 2015 Dec; 7(46):19501-18. PubMed ID: 26538278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release.
    Zou P; Yu Y; Wang YA; Zhong Y; Welton A; Galbán C; Wang S; Sun D
    Mol Pharm; 2010 Dec; 7(6):1974-84. PubMed ID: 20845930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of mechanical properties of iron oxide nanoparticle-loaded functional nano-carrier on tumor targeting and imaging.
    Choi WI; Kim JY; Heo SU; Jeong YY; Kim YH; Tae G
    J Control Release; 2012 Sep; 162(2):267-75. PubMed ID: 22824783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy.
    Kang B; Afifi MM; Austin LA; El-Sayed MA
    ACS Nano; 2013 Aug; 7(8):7420-7. PubMed ID: 23909658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.