BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 2413143)

  • 1. Antigen recognition by effector T cells in antileishmanial defense.
    Sypek JP; Panosian CB; Wyler DJ
    J Infect Dis; 1985 Nov; 152(5):1057-63. PubMed ID: 2413143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophage activation for antileishmanial defense by an apparently novel mechanism.
    Wyler DJ; Beller DI; Sypek JP
    J Immunol; 1987 Feb; 138(4):1246-9. PubMed ID: 3100630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell contact-mediated macrophage activation for antileishmanial defense. I. Lymphocyte effector mechanism that is contact dependent and noncytotoxic.
    Panosian CB; Sypek JP; Wyler DJ
    J Immunol; 1984 Dec; 133(6):3358-65. PubMed ID: 6208278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell contact-mediated macrophage activation for antileishmanial defense. II. Identification of effector cell phenotype and genetic restriction.
    Sypek JP; Panosian CB; Wyler DJ
    J Immunol; 1984 Dec; 133(6):3351-7. PubMed ID: 6333458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Th2 lymphocyte clone can activate macrophage antileishmanial defense by a lymphokine-independent mechanism in vitro and can augment parasite attrition in vivo.
    Sypek JP; Matzilevich MM; Wyler DJ
    Cell Immunol; 1991 Mar; 133(1):178-86. PubMed ID: 1825032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell contact-mediated macrophage activation for antileishmanial defence: mapping of the genetic restriction to the I region of the MHC.
    Sypek JP; Wyler DJ
    Clin Exp Immunol; 1985 Dec; 62(3):449-57. PubMed ID: 3936653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-cell hybridomas reveal two distinct mechanisms of antileishmanial defense.
    Sypek JP; Wyler DJ
    Infect Immun; 1990 May; 58(5):1146-52. PubMed ID: 2323812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antileishmanial defense in macrophages triggered by tumor necrosis factor expressed on CD4+ T lymphocyte plasma membrane.
    Sypek JP; Wyler DJ
    J Exp Med; 1991 Oct; 174(4):755-9. PubMed ID: 1680956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular destruction of Leishmania donovani and Leishmania tropica amastigotes by activated macrophages: dissociation of these microbicidal effector activities in vitro.
    Hockmeyer WT; Walters D; Gore RW; Williams JS; Fortier AH; Nacy CA
    J Immunol; 1984 Jun; 132(6):3120-5. PubMed ID: 6725948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Susceptibility of lymphokine-resistant Leishmania to cell contact-mediated macrophage activation.
    Sypek JP; Wyler DJ
    J Infect Dis; 1988 Aug; 158(2):392-7. PubMed ID: 3136211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soluble TNF and membrane TNF expressed on CD4+ T lymphocytes differ in their ability to activate macrophage antileishmanial defense.
    Birkland TP; Sypek JP; Wyler DJ
    J Leukoc Biol; 1992 Mar; 51(3):296-9. PubMed ID: 1347312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spectrum in the susceptibility of leishmanial strains to intracellular killing by murine macrophages.
    Scott P; Sher A
    J Immunol; 1986 Feb; 136(4):1461-6. PubMed ID: 3511147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visceral leishmaniasis: a disease associated with inability of lymphocytes to activate macrophages to kill leishmania.
    Carvalho EM; Bacellar OA; Reed S; Barral A; Rocha H
    Braz J Med Biol Res; 1988; 21(1):85-92. PubMed ID: 3179584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross reactivity between Trypanosoma cruzi and Leishmania antigens in the lymphocyte blastogenesis assay.
    Carvalho EM; Reed SG; Johnson WD
    Trans R Soc Trop Med Hyg; 1987; 81(1):82-4. PubMed ID: 3127960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoregulatory pathways in murine leishmaniasis: different regulatory control during Leishmania mexicana mexicana and Leishmania major infections.
    Alexander J; Kaye PM
    Clin Exp Immunol; 1985 Sep; 61(3):674-82. PubMed ID: 3907906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on intracellular killing of Leishmania major and lysis of host macrophages by immune lymphoid cells in vitro.
    Pham TV; Mauël J
    Parasite Immunol; 1987 Nov; 9(6):721-36. PubMed ID: 2448731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presentation of the protective parasite antigen LACK by Leishmania-infected macrophages.
    Prina E; Lang T; Glaichenhaus N; Antoine JC
    J Immunol; 1996 Jun; 156(11):4318-27. PubMed ID: 8666803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Murine cutaneous leishmaniasis: resistance correlates with the capacity to generate interferon-gamma in response to Leishmania antigens in vitro.
    Sadick MD; Locksley RM; Tubbs C; Raff HV
    J Immunol; 1986 Jan; 136(2):655-61. PubMed ID: 3079789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Class II MHC/peptide interaction in Leishmania donovani infection: implications in vaccine design.
    Roy K; Naskar K; Ghosh M; Roy S
    J Immunol; 2014 Jun; 192(12):5873-80. PubMed ID: 24850723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative assessment of a DNA and protein Leishmania donovani gamma glutamyl cysteine synthetase vaccine to cross-protect against murine cutaneous leishmaniasis caused by L. major or L. mexicana infection.
    Campbell SA; Alawa J; Doro B; Henriquez FL; Roberts CW; Nok A; Alawa CB; Alsaadi M; Mullen AB; Carter KC
    Vaccine; 2012 Feb; 30(7):1357-63. PubMed ID: 22210224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.