These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24131519)

  • 1. Automatically transforming pre- to post-composed phenotypes: EQ-lising HPO and MP.
    Oellrich A; Grabmüller C; Rebholz-Schuhmann D
    J Biomed Semantics; 2013 Oct; 4(1):29. PubMed ID: 24131519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical application of ontologies to annotate and analyse large scale raw mouse phenotype data.
    Beck T; Morgan H; Blake A; Wells S; Hancock JM; Mallon AM
    BMC Bioinformatics; 2009 May; 10 Suppl 5(Suppl 5):S2. PubMed ID: 19426459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards improving phenotype representation in OWL.
    Loebe F; Stumpf F; Hoehndorf R; Herre H
    J Biomed Semantics; 2012 Sep; 3 Suppl 2(Suppl 2):S5. PubMed ID: 23046625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary characters, phenotypes and ontologies: curating data from the systematic biology literature.
    Dahdul WM; Balhoff JP; Engeman J; Grande T; Hilton EJ; Kothari C; Lapp H; Lundberg JG; Midford PE; Vision TJ; Westerfield M; Mabee PM
    PLoS One; 2010 May; 5(5):e10708. PubMed ID: 20505755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Methods Enable Direct Computation on Phenotypic Descriptions for Novel Candidate Gene Prediction.
    Braun IR; Lawrence-Dill CJ
    Front Plant Sci; 2019; 10():1629. PubMed ID: 31998331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking human diseases to animal models using ontology-based phenotype annotation.
    Washington NL; Haendel MA; Mungall CJ; Ashburner M; Westerfield M; Lewis SE
    PLoS Biol; 2009 Nov; 7(11):e1000247. PubMed ID: 19956802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data.
    Smith CL; Eppig JT
    Mamm Genome; 2012 Oct; 23(9-10):653-68. PubMed ID: 22961259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking rare and common disease: mapping clinical disease-phenotypes to ontologies in therapeutic target validation.
    Sarntivijai S; Vasant D; Jupp S; Saunders G; Bento AP; Gonzalez D; Betts J; Hasan S; Koscielny G; Dunham I; Parkinson H; Malone J
    J Biomed Semantics; 2016; 7():8. PubMed ID: 27011785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2019 Jun; 35(12):2133-2140. PubMed ID: 30407490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Principles for the Construction of an Ontology-Based Knowledge Base: A Case Study Approach.
    Jing X; Hardiker NR; Kay S; Gao Y
    JMIR Med Inform; 2018 Dec; 6(4):e52. PubMed ID: 30578220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The First Organ-Based Ontology for Arthropods (Ontology of Arthropod Circulatory Systems - OArCS) and its Integration into a Novel Formalization Scheme for Morphological Descriptions.
    Wirkner CS; Göpel T; Runge J; Keiler J; Klussmann-Fricke BJ; Huckstorf K; Scholz S; Mikó I; J Yoder M; Richter S
    Syst Biol; 2017 Sep; 66(5):754-768. PubMed ID: 28123116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative comparison of mapping methods between Human and Mammalian Phenotype Ontology.
    Oellrich A; Gkoutos GV; Hoehndorf R; Rebholz-Schuhmann D
    J Biomed Semantics; 2012 Sep; 3 Suppl 2(Suppl 2):S1. PubMed ID: 23046555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating ontologies of human diseases, phenotypes, and radiological diagnosis.
    Finke MT; Filice RW; Kahn CE
    J Am Med Inform Assoc; 2019 Feb; 26(2):149-154. PubMed ID: 30624645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new synonym-substitution method to enrich the human phenotype ontology.
    Taboada M; Rodriguez H; Gudivada RC; Martinez D
    BMC Bioinformatics; 2017 Oct; 18(1):446. PubMed ID: 29017443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relations as patterns: bridging the gap between OBO and OWL.
    Hoehndorf R; Oellrich A; Dumontier M; Kelso J; Rebholz-Schuhmann D; Herre H
    BMC Bioinformatics; 2010 Aug; 11():441. PubMed ID: 20807438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontological representation, classification and data-driven computing of phenotypes.
    Uciteli A; Beger C; Kirsten T; Meineke FA; Herre H
    J Biomed Semantics; 2020 Dec; 11(1):15. PubMed ID: 33349245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ontological foundation for ocular phenotypes and rare eye diseases.
    Sergouniotis PI; Maxime E; Leroux D; Olry A; Thompson R; Rath A; Robinson PN; Dollfus H;
    Orphanet J Rare Dis; 2019 Jan; 14(1):8. PubMed ID: 30626441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cellular microscopy phenotype ontology.
    Jupp S; Malone J; Burdett T; Heriche JK; Williams E; Ellenberg J; Parkinson H; Rustici G
    J Biomed Semantics; 2016; 7():28. PubMed ID: 27195102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PhenoGO: assigning phenotypic context to gene ontology annotations with natural language processing.
    Lussier Y; Borlawsky T; Rappaport D; Liu Y; Friedman C
    Pac Symp Biocomput; 2006; ():64-75. PubMed ID: 17094228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.