These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 24132017)

  • 1. Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms.
    Muceli S; Jiang N; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):623-33. PubMed ID: 24132017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control?
    Jiang N; Vujaklija I; Rehbaum H; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):549-58. PubMed ID: 24235278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization.
    Lin C; Wang B; Jiang N; Farina D
    J Neural Eng; 2018 Apr; 15(2):026017. PubMed ID: 29076456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.
    Pan L; Zhang D; Jiang N; Sheng X; Zhu X
    J Neuroeng Rehabil; 2015 Dec; 12():110. PubMed ID: 26631105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-density surface EMG maps from upper-arm and forearm muscles.
    Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2012 Dec; 9():85. PubMed ID: 23216679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can Multi-DoF Training Improve Robustness of Muscle Synergy Inspired Myocontrollers?
    Yeung D; Farina D; Vujaklija I
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():665-670. PubMed ID: 31374707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.
    Gazzoni M; Celadon N; Mastrapasqua D; Paleari M; Margaria V; Ariano P
    PLoS One; 2014; 9(10):e109943. PubMed ID: 25289669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol.
    Stango A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes.
    Clancy EA; Martinez-Luna C; Wartenberg M; Dai C; Farrell TR
    J Electromyogr Kinesiol; 2017 Jun; 34():24-36. PubMed ID: 28384495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced EMG signal processing for simultaneous and proportional myoelectric control.
    Nielsen JL; Holmgaard S; Jiang N; Englehart K; Farina D; Parker P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4335-8. PubMed ID: 19963822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration.
    Young AJ; Hargrove LJ; Kuiken TA
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):645-52. PubMed ID: 22147289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals.
    Farina D; Févotte C; Doncarli C; Merletti R
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1555-67. PubMed ID: 15376504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):737-46. PubMed ID: 26302506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees.
    Jiang N; Rehbaum H; Vujaklija I; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):501-10. PubMed ID: 23996582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
    Hwang HJ; Hahne JM; Müller KR
    J Neural Eng; 2014 Oct; 11(5):056008. PubMed ID: 25082779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two degrees of freedom, dynamic, hand-wrist EMG-force using a minimum number of electrodes.
    Dai C; Zhu Z; Martinez-Luna C; Hunt TR; Farrell TR; Clancy EA
    J Electromyogr Kinesiol; 2019 Aug; 47():10-18. PubMed ID: 31009829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal.
    Jiang N; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1070-80. PubMed ID: 19272889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing the number of EMG electrodes during online hand gesture classification with changing wrist positions.
    Pelaez Murciego L; Henrich MC; Spaich EG; Dosen S
    J Neuroeng Rehabil; 2022 Jul; 19(1):78. PubMed ID: 35864513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):156-163. PubMed ID: 29994645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of regional activation by factorization of high-density surface EMG signals: A comparison of Principal Component Analysis and Non-negative Matrix factorization.
    Gallina A; Garland SJ; Wakeling JM
    J Electromyogr Kinesiol; 2018 Aug; 41():116-123. PubMed ID: 29879693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.