These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 24132041)

  • 1. Electron transport through a quantum dot assisted by cavity photons.
    Abdullah NR; Tang CS; Manolescu A; Gudmundsson V
    J Phys Condens Matter; 2013 Nov; 25(46):465302. PubMed ID: 24132041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent transient transport of interacting electrons through a quantum waveguide switch.
    Abdullah NR; Tang CS; Manolescu A; Gudmundsson V
    J Phys Condens Matter; 2015 Jan; 27(1):015301. PubMed ID: 25425564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric Inversion in a Resonant Quantum Dot-Cavity System in the Steady-State Regime.
    Abdullah NR; Tang CS; Manolescu A; Gudmundsson V
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31091757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manifestation of the Purcell Effect in Current Transport through a Dot-Cavity-QED System.
    Abdullah NR; Tang CS; Manolescu A; Gudmundsson V
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31319544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pumped charge and spin current in a quantum dot molecule.
    Pan H; Yang SA; Niu Q
    J Phys Condens Matter; 2010 Jul; 22(27):275302. PubMed ID: 21399251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon-assisted spin-polarized tunneling through an interacting quantum dot.
    Rudziński W
    J Phys Condens Matter; 2008 Jul; 20(27):275214. PubMed ID: 21694375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear response spin admittance of a quantum dot subject to a spin bias.
    Ivanov T
    J Phys Condens Matter; 2010 Oct; 22(39):395304. PubMed ID: 21403226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system.
    Kaer P; Nielsen TR; Lodahl P; Jauho AP; Mørk J
    Phys Rev Lett; 2010 Apr; 104(15):157401. PubMed ID: 20482014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system.
    Wang C; Zhang Y; Zhang R
    Opt Express; 2011 Dec; 19(25):25685-95. PubMed ID: 22273961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition of static magnetic and dynamic photon forces in electronic transport through a quantum dot.
    Rauf Abdullah N; Tang CS; Manolescu A; Gudmundsson V
    J Phys Condens Matter; 2016 Sep; 28(37):375301. PubMed ID: 27420809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex dynamics of photon entanglement in the two-mode Jaynes-Cummings model.
    Erementchouk M; Leuenberger MN
    Nanotechnology; 2010 Jul; 21(27):274019. PubMed ID: 20571206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexisting spin and Rabi oscillations at intermediate time regimes in electron transport through a photon cavity.
    Gudmundsson V; Gestsson H; Abdullah NR; Tang CS; Manolescu A; Moldoveanu V
    Beilstein J Nanotechnol; 2019; 10():606-616. PubMed ID: 30873332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
    Press D; Götzinger S; Reitzenstein S; Hofmann C; Löffler A; Kamp M; Forchel A; Yamamoto Y
    Phys Rev Lett; 2007 Mar; 98(11):117402. PubMed ID: 17501092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Markovian full counting statistics in quantum dot molecules.
    Xue HB; Jiao HJ; Liang JQ; Liu WM
    Sci Rep; 2015 Mar; 5():8978. PubMed ID: 25752245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photon emission from a cavity-coupled double quantum dot.
    Liu YY; Petersson KD; Stehlik J; Taylor JM; Petta JR
    Phys Rev Lett; 2014 Jul; 113(3):036801. PubMed ID: 25083659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lasing properties of non-resonant single quantum dot-cavity system under incoherent excitation.
    Guan H; Yao P; Yu W; Wang P; Ming H
    Opt Express; 2012 Dec; 20(27):28437-46. PubMed ID: 23263079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-mediated heat transport in a quantum dot attached to leads.
    Chi F; Dubi Y
    J Phys Condens Matter; 2012 Apr; 24(14):145301. PubMed ID: 22410747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current.
    Stadler P; Belzig W; Rastelli G
    Phys Rev Lett; 2014 Jul; 113(4):047201. PubMed ID: 25105648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.