BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 2413216)

  • 1. RNA splicing in Neurospora mitochondria. Defective splicing of mitochondrial mRNA precursors in the nuclear mutant cyt18-1.
    Collins RA; Lambowitz AM
    J Mol Biol; 1985 Aug; 184(3):413-28. PubMed ID: 2413216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA splicing in neurospora mitochondria: self-splicing of a mitochondrial intron in vitro.
    Garriga G; Lambowitz AM
    Cell; 1984 Dec; 39(3 Pt 2):631-41. PubMed ID: 6096015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-dependent splicing of a group I intron in ribonucleoprotein particles and soluble fractions.
    Garriga G; Lambowitz AM
    Cell; 1986 Aug; 46(5):669-80. PubMed ID: 2427199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A group II intron in the Neurospora mitochondrial coI gene: nucleotide sequence and implications for splicing and molecular evolution.
    Field DJ; Sommerfield A; Saville BJ; Collins RA
    Nucleic Acids Res; 1989 Nov; 17(22):9087-99. PubMed ID: 2531370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in nuclear gene cyt-4 of Neurospora crassa result in pleiotropic defects in processing and splicing of mitochondrial RNAs.
    Dobinson KF; Henderson M; Kelley RL; Collins RA; Lambowitz AM
    Genetics; 1989 Sep; 123(1):97-108. PubMed ID: 2478417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-splicing of yeast mitochondrial ribosomal and messenger RNA precursors.
    van der Horst G; Tabak HF
    Cell; 1985 Apr; 40(4):759-66. PubMed ID: 2580635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribonucleic acid splicing in Neurospora Mitochondria: secondary structure of the 35S ribosomal precursor ribonucleic acid investigated by digestion with ribonuclease III and by electron microscopy.
    Grimm MF; Cole MD; Lambowitz AM
    Biochemistry; 1981 May; 20(10):2836-42. PubMed ID: 6264946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Neurospora mitochondrial group I introns reveals different CYT-18 dependent and independent splicing strategies and an alternative 3' splice site for an intron ORF.
    Wallweber GJ; Mohr S; Rennard R; Caprara MG; Lambowitz AM
    RNA; 1997 Feb; 3(2):114-31. PubMed ID: 9042940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlocked RNA circle formation by a self-splicing yeast mitochondrial group I intron.
    Tabak HF; Van der Horst G; Kamps AM; Arnberg AC
    Cell; 1987 Jan; 48(1):101-10. PubMed ID: 2431791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of tyrosyl-tRNA synthetase in splicing of group I introns in Neurospora crassa mitochondria: biochemical and immunochemical analyses of splicing activity.
    Majumder AL; Akins RA; Wilkinson JG; Kelley RL; Snook AJ; Lambowitz AM
    Mol Cell Biol; 1989 May; 9(5):2089-104. PubMed ID: 2526294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The self-splicing intron in the Neurospora apocytochrome b gene contains a long reading frame in frame with the upstream exon.
    Collins RA; Reynolds CA; Olive J
    Nucleic Acids Res; 1988 Feb; 16(3):1125-34. PubMed ID: 2963999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Neurospora mitochondrial promoters and analysis of synthesis of the mitochondrial small rRNA in wild-type and the promoter mutant [poky].
    Kubelik AR; Kennell JC; Akins RA; Lambowitz AM
    J Biol Chem; 1990 Mar; 265(8):4515-26. PubMed ID: 1689728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof.
    Akins RA; Lambowitz AM
    Cell; 1987 Jul; 50(3):331-45. PubMed ID: 3607872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intron splicing: a conserved internal signal in introns of animal pre-mRNAs.
    Keller EB; Noon WA
    Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7417-20. PubMed ID: 6209716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro splicing of the terminal intervening sequence of Saccharomyces cerevisiae cytochrome b pre-mRNA.
    Gampel A; Tzagoloff A
    Mol Cell Biol; 1987 Jul; 7(7):2545-51. PubMed ID: 3302680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation of the conserved first nucleotide of a group II intron from yeast mitochondrial DNA reduces the rate but allows accurate splicing.
    Peebles CL; Belcher SM; Zhang M; Dietrich RC; Perlman PS
    J Biol Chem; 1993 Jun; 268(16):11929-38. PubMed ID: 8389367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Cbp2 protein stimulates the splicing of the omega intron of yeast mitochondria.
    Shaw LC; Lewin AS
    Nucleic Acids Res; 1997 Apr; 25(8):1597-604. PubMed ID: 9092668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of the Neurospora mitochondrial large rRNA intron and construction of a mini-intron that shows protein-dependent splicing.
    Guo QB; Akins RA; Garriga G; Lambowitz AM
    J Biol Chem; 1991 Jan; 266(3):1809-19. PubMed ID: 1824845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-splicing RNA excises an intron lariat.
    Peebles CL; Perlman PS; Mecklenburg KL; Petrillo ML; Tabor JH; Jarrell KA; Cheng HL
    Cell; 1986 Jan; 44(2):213-23. PubMed ID: 3510741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.