BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24132204)

  • 1. Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation.
    Li C; Wang J
    J R Soc Interface; 2013 Dec; 10(89):20130787. PubMed ID: 24132204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths.
    Li C; Wang J
    PLoS Comput Biol; 2013; 9(8):e1003165. PubMed ID: 23935477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the Waddington landscape and biological paths for development and differentiation.
    Wang J; Zhang K; Xu L; Wang E
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8257-62. PubMed ID: 21536909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation.
    Xu L; Zhang K; Wang J
    PLoS One; 2014; 9(8):e105216. PubMed ID: 25133589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Modelling of the Waddington Epigenetic Landscape.
    Taherian Fard A; Ragan MA
    Methods Mol Biol; 2019; 1975():157-171. PubMed ID: 31062309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes.
    Feng H; Wang J
    Sci Rep; 2012; 2():550. PubMed ID: 22870379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From understanding the development landscape of the canonical fate-switch pair to constructing a dynamic landscape for two-step neural differentiation.
    Qiu X; Ding S; Shi T
    PLoS One; 2012 Dec; 7(12):e49271. PubMed ID: 23300518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation.
    Wang J; Xu L; Wang E; Huang S
    Biophys J; 2010 Jul; 99(1):29-39. PubMed ID: 20655830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the underlying landscape and paths of cancer.
    Li C; Wang J
    J R Soc Interface; 2014 Nov; 11(100):20140774. PubMed ID: 25232051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systems biology of stem cell fate and cellular reprogramming.
    Macarthur BD; Ma'ayan A; Lemischka IR
    Nat Rev Mol Cell Biol; 2009 Oct; 10(10):672-81. PubMed ID: 19738627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Cellular Differentiation and Reprogramming with Gene Regulatory Networks.
    Hartmann A; Ravichandran S; Del Sol A
    Methods Mol Biol; 2019; 1975():37-51. PubMed ID: 31062304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell Circuit.
    Li C; Wang J
    Cancer Res; 2015 Jul; 75(13):2607-18. PubMed ID: 25972342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deterministic map of Waddington's epigenetic landscape for cell fate specification.
    Bhattacharya S; Zhang Q; Andersen ME
    BMC Syst Biol; 2011 May; 5():85. PubMed ID: 21619617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Analysis of Altering Cell Fate.
    Abdallah HM; Del Vecchio D
    Methods Mol Biol; 2019; 1975():363-405. PubMed ID: 31062319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of cell-type transition mediated by epigenetic modifications.
    Huang R; Situ Q; Lei J
    J Theor Biol; 2024 Jan; 577():111664. PubMed ID: 37977478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Landscape inferred from gene expression data governs pluripotency in embryonic stem cells.
    Kang X; Li C
    Comput Struct Biotechnol J; 2020; 18():366-374. PubMed ID: 32128066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Basal Level of Gene Expression Associated with Chromatin Loosening Shapes Waddington Landscapes and Controls Cell Differentiation.
    Flouriot G; Jehanno C; Le Page Y; Le Goff P; Boutin B; Michel D
    J Mol Biol; 2020 Mar; 432(7):2253-2270. PubMed ID: 32105732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare-event sampling of epigenetic landscapes and phenotype transitions.
    Tse MJ; Chu BK; Gallivan CP; Read EL
    PLoS Comput Biol; 2018 Aug; 14(8):e1006336. PubMed ID: 30074987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Monte Carlo method for in silico modeling and visualization of Waddington's epigenetic landscape with intermediate details.
    Zhang X; Chong KH; Zhu L; Zheng J
    Biosystems; 2020 Dec; 198():104275. PubMed ID: 33080349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies.
    Ladewig J; Koch P; Brüstle O
    Nat Rev Mol Cell Biol; 2013 Apr; 14(4):225-36. PubMed ID: 23847783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.