These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24132205)

  • 1. Wing and body motion and aerodynamic and leg forces during take-off in droneflies.
    Chen MW; Zhang YL; Sun M
    J R Soc Interface; 2013 Dec; 10(89):20130808. PubMed ID: 24132205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wing kinematics measurement and aerodynamics of hovering droneflies.
    Liu Y; Sun M
    J Exp Biol; 2008 Jul; 211(Pt 13):2014-25. PubMed ID: 18552290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.
    Cheng X; Sun M
    Sci Rep; 2016 May; 6():25706. PubMed ID: 27168523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces.
    Bimbard G; Kolomenskiy D; Bouteleux O; Casas J; Godoy-Diana R
    J Exp Biol; 2013 Sep; 216(Pt 18):3551-63. PubMed ID: 23788714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and Numerical Investigation on Dragonfly Wing and Body Motion during Voluntary Take-off.
    Li Q; Zheng M; Pan T; Su G
    Sci Rep; 2018 Jan; 8(1):1011. PubMed ID: 29343709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing and body kinematics measurement and force analyses of landing in fruit flies.
    Shen C; Sun M
    Bioinspir Biomim; 2017 Dec; 13(1):016004. PubMed ID: 29027521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
    van Veen WG; van Leeuwen JL; Muijres FT
    J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pausing after clap reduces power required to fling wings apart at low Reynolds number.
    Kasoju VT; Santhanakrishnan A
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34034247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wing-kinematics measurement and flight modelling of the bamboo weevil
    Li X; Guo C
    IET Nanobiotechnol; 2020 Feb; 14(1):53-58. PubMed ID: 31935678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wing and body kinematics of forward flight in drone-flies.
    Meng XG; Sun M
    Bioinspir Biomim; 2016 Aug; 11(5):056002. PubMed ID: 27526336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed.
    Muijres FT; Chang SW; van Veen WG; Spitzen J; Biemans BT; Koehl MAR; Dudley R
    J Exp Biol; 2017 Oct; 220(Pt 20):3751-3762. PubMed ID: 29046418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Birds repurpose the role of drag and lift to take off and land.
    Chin DD; Lentink D
    Nat Commun; 2019 Nov; 10(1):5354. PubMed ID: 31767856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.