These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24132231)

  • 21. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Giant optical forces in planar dielectric photonic metamaterials.
    Zhang J; MacDonald KF; Zheludev NI
    Opt Lett; 2014 Aug; 39(16):4883-6. PubMed ID: 25121899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toroidal Localized Spoof Plasmons on Compact Metadisks.
    Qin P; Yang Y; Musa MY; Zheng B; Wang Z; Hao R; Yin W; Chen H; Li E
    Adv Sci (Weinh); 2018 Mar; 5(3):1700487. PubMed ID: 29593952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials.
    Yang S; Tang C; Liu Z; Wang B; Wang C; Li J; Wang L; Gu C
    Opt Express; 2017 Jul; 25(14):15938-15946. PubMed ID: 28789104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems.
    Adato R; Artar A; Erramilli S; Altug H
    Nano Lett; 2013 Jun; 13(6):2584-91. PubMed ID: 23647070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microscopies Enabled by Photonic Metamaterials.
    Xiong Y; Li N; Che C; Wang W; Barya P; Liu W; Liu L; Wang X; Wu S; Hu H; Cunningham BT
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Opt Express; 2014 Dec; 22(25):30889-98. PubMed ID: 25607038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From isolated metaatoms to photonic metamaterials: evolution of the plasmonic near-field.
    von Cube F; Irsen S; Diehl R; Niegemann J; Busch K; Linden S
    Nano Lett; 2013 Feb; 13(2):703-8. PubMed ID: 23339664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.
    Lu X; Shi J; Liu R; Guan C
    Opt Express; 2012 Jul; 20(16):17581-90. PubMed ID: 23038311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fano resonances from gradient-index metamaterials.
    Xu Y; Li S; Hou B; Chen H
    Sci Rep; 2016 Jan; 6():19927. PubMed ID: 26813107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple Sharp Fano Resonances in a Deep-Subwavelength Spherical Hyperbolic Metamaterial Cavity.
    Gu P; Guo Y; Chen J; Zhang Z; Yan Z; Liu F; Tang C; Du W; Chen Z
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells.
    Ahmadivand A; Gerislioglu B; Tomitaka A; Manickam P; Kaushik A; Bhansali S; Nair M; Pala N
    Biomed Opt Express; 2018 Feb; 9(2):373-386. PubMed ID: 29552379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage-tunable dual-layer terahertz metamaterials.
    Zhao X; Fan K; Zhang J; Keiser GR; Duan G; Averitt RD; Zhang X
    Microsyst Nanoeng; 2016; 2():16025. PubMed ID: 31057825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators.
    Ren XB; Ren K; Zhang Y; Ming CG; Han Q
    Beilstein J Nanotechnol; 2019; 10():2459-2467. PubMed ID: 31921524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems.
    Chen L; Gao C; Xu J; Zang X; Cai B; Zhu Y
    Opt Lett; 2013 May; 38(9):1379-81. PubMed ID: 23632490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-Polarized Surface-Enhanced Infrared Spectroscopy by Fano-Resonant Asymmetric Metamaterials.
    Ishikawa A; Hara S; Tanaka T; Hayashi Y; Tsuruta K
    Sci Rep; 2017 Jun; 7(1):3205. PubMed ID: 28600570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Demonstration of sharp multiple Fano resonances in optical metamaterials.
    Moritake Y; Kanamori Y; Hane K
    Opt Express; 2016 May; 24(9):9332-9. PubMed ID: 27137549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface.
    Cui C; Yuan S; Qiu X; Zhu L; Wang Y; Li Y; Song J; Huang Q; Zeng C; Xia J
    Nanoscale; 2019 Aug; 11(30):14446-14454. PubMed ID: 31334735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.