BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 2413224)

  • 1. Regulation of myelination: axons not required for the biosynthesis of basal levels of the major myelin glycoprotein by Schwann cells in denervated distal segments of the adult cat sciatic nerve.
    Poduslo JF; Berg CT; Ross SM; Spencer PS
    J Neurosci Res; 1985; 14(2):177-85. PubMed ID: 2413224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of myelination: biosynthesis of the major myelin glycoprotein by Schwann cells in the presence and absence of myelin assembly.
    Poduslo JF
    J Neurochem; 1984 Feb; 42(2):493-503. PubMed ID: 6198464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of myelin genes during peripheral nerve remyelination requires a continuous signal from the ingrowing axon.
    Gupta SK; Pringle J; Poduslo JF; Mezei C
    J Neurosci Res; 1993 Jan; 34(1):14-23. PubMed ID: 7678657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysosomal delivery of the major myelin glycoprotein in the absence of myelin assembly: posttranslational regulation of the level of expression by Schwann cells.
    Brunden KR; Poduslo JF
    J Cell Biol; 1987 Mar; 104(3):661-9. PubMed ID: 2434515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of myelination: Schwann cell transition from a myelin-maintaining state to a quiescent state after permanent nerve transection.
    Poduslo JF; Dyck PJ; Berg CT
    J Neurochem; 1985 Feb; 44(2):388-400. PubMed ID: 2578177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of axons in the regulation of P0 biosynthesis by Schwann cells.
    Brunden KR; Windebank AJ; Poduslo JF
    J Neurosci Res; 1990 Jun; 26(2):135-43. PubMed ID: 1694900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schwann cell expression of a major myelin glycoprotein in the absence of myelin assembly.
    Poduslo JF; Berg CT; Dyck PJ
    Proc Natl Acad Sci U S A; 1984 Mar; 81(6):1864-6. PubMed ID: 6584919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coexpression of PMP22 gene with MBP and P0 during de novo myelination and nerve repair.
    Kuhn G; Lie A; Wilms S; Müller HW
    Glia; 1993 Aug; 8(4):256-64. PubMed ID: 7691737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P0 mRNA expression in cultures of Schwann cells and neurons that lack basal lamina and myelin.
    Brunden KR; Brown DT
    J Neurosci Res; 1990 Oct; 27(2):159-68. PubMed ID: 1701492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal modulation of myelin gene expression in the peripheral nerve.
    LeBlanc AC; Poduslo JF
    J Neurosci Res; 1990 Jul; 26(3):317-26. PubMed ID: 1697906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial schwannopathy and peripheral myelinopathy in a rabbit model of dideoxycytidine neurotoxicity.
    Anderson TD; Davidovich A; Feldman D; Sprinkle TJ; Arezzo J; Brosnan C; Calderon RO; Fossom LH; DeVries JT; DeVries GH
    Lab Invest; 1994 May; 70(5):724-39. PubMed ID: 7515130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posttranslational protein modification: biosynthetic control mechanisms in the glycosylation of the major myelin glycoprotein by Schwann cells.
    Poduslo JF
    J Neurochem; 1985 Apr; 44(4):1194-206. PubMed ID: 2579205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased P0 glycoprotein gene expression in primary and transfected rat Schwann cells after treatment with axolemma-enriched fraction.
    Knight RM; Fossom LH; Neuberger TJ; Attema BL; Tennekoon G; Bharucha V; DeVries GH
    J Neurosci Res; 1993 May; 35(1):38-45. PubMed ID: 7685396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation-specific regulation of Schwann cell expression of the major myelin glycoprotein.
    Poduslo JF; Windebank AJ
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5987-91. PubMed ID: 2412226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolic regulation of the expression of the major myelin glycoprotein by Schwann cells in culture.
    Brunden KR; Windebank AJ; Poduslo JF
    J Neurochem; 1990 Feb; 54(2):459-66. PubMed ID: 1688919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells.
    Menichella DM; Arroyo EJ; Awatramani R; Xu T; Baron P; Vallat JM; Balsamo J; Lilien J; Scarlato G; Kamholz J; Scherer SS; Shy ME
    Mol Cell Neurosci; 2001 Dec; 18(6):606-18. PubMed ID: 11749037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel method for studying myelination in vivo reveals that EDTA is a potent inhibitor of myelin protein and mRNA expression during development of the rat sciatic nerve.
    Meintanis S; Thomaidou D; Jessen KR; Mirsky R; Matsas R
    Glia; 2004 Nov; 48(2):132-44. PubMed ID: 15378656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of fast axonal transport in vivo leads to alterations in Schwann cell gene expression.
    Wu W; Toma JG; Chan H; Smith R; Miller FD
    Dev Biol; 1994 Jun; 163(2):423-39. PubMed ID: 7515362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axons regulate the expression of Shaker-like potassium channel genes in Schwann cells in peripheral nerve.
    Chiu SY; Scherer SS; Blonski M; Kang SS; Messing A
    Glia; 1994 Sep; 12(1):1-11. PubMed ID: 7843783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of myelin protein gene transcripts by Schwann cells of regenerating nerve.
    Mitchell LS; Griffiths IR; Morrison S; Barrie JA; Kirkham D; McPhilemy K
    J Neurosci Res; 1990 Oct; 27(2):125-35. PubMed ID: 1701490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.