These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

681 related articles for article (PubMed ID: 2413277)

  • 21. Na(+)-ATPase activity, cell ion and water contents of kidney cortex slices from rats on a high Na+ diet.
    Di Campo V; Henríquez LM; Proverbio T; Marín R; Proverbio F
    Biomed Biochim Acta; 1991; 50(12):1213-6. PubMed ID: 1668636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional profile of the isolated uremic nephron. Evidence of proximal tubular "memory" in experimental renal disease.
    Trizna W; Yanagawa N; Bar-Khayim Y; Houston B; Fine LG
    J Clin Invest; 1981 Sep; 68(3):760-7. PubMed ID: 7276170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of mitochondrial glutathione status and cellular energetics in primary cultures of proximal tubular cells from remnant kidney of uninephrectomized rats.
    Benipal B; Lash LH
    Biochem Pharmacol; 2013 May; 85(9):1379-88. PubMed ID: 23419872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on terminal differentiation of rat renal proximal tubular cells in culture: ouabain-sensitive K and Na transport.
    Larsson SH; Aperia A; Lechene C
    Acta Physiol Scand; 1988 Feb; 132(2):129-34. PubMed ID: 2852433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Load dependence of proximal tubular fluid and bicarbonate reabsorption in the remnant kidney of the Munich-Wistar rat.
    Maddox DA; Horn JF; Famiano FC; Gennari FJ
    J Clin Invest; 1986 May; 77(5):1639-49. PubMed ID: 3009550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. alpha-Adducin mutations increase Na/K pump activity in renal cells by affecting constitutive endocytosis: implications for tubular Na reabsorption.
    Torielli L; Tivodar S; Montella RC; Iacone R; Padoani G; Tarsini P; Russo O; Sarnataro D; Strazzullo P; Ferrari P; Bianchi G; Zurzolo C
    Am J Physiol Renal Physiol; 2008 Aug; 295(2):F478-87. PubMed ID: 18524856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sodium transport in dogs with acute remnant and glomerulonephritic kidneys.
    Wagnild JP; Wen SF
    J Lab Clin Med; 1978 Jun; 91(6):911-21. PubMed ID: 650057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional correlates of compensatory renal hypertrophy.
    Hayslett JP; Kashgarian M; Epstein FH
    J Clin Invest; 1968 Apr; 47(4):774-99. PubMed ID: 5641618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH gradient-dependent increased Na+-H+ antiport capacity of the rabbit remnant kidney.
    Nord EP; Hafezi A; Kaunitz JD; Trizna W; Fine LG
    Am J Physiol; 1985 Jul; 249(1 Pt 2):F90-8. PubMed ID: 2409819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early enhancement of fluid transport in rabbit proximal straight tubules after loss of contralateral renal excretory function.
    Tabei K; Levenson DJ; Brenner BM
    J Clin Invest; 1983 Sep; 72(3):871-81. PubMed ID: 6886008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active ion transport in the renal proximal tubule. II. Ionic dependence of the Na pump.
    Soltoff SP; Mandel LJ
    J Gen Physiol; 1984 Oct; 84(4):623-42. PubMed ID: 6094705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Handling of digoxin and ouabain by renal tubular cells (LLC-PK1).
    Ito S; Koren G; Harper PA
    J Pharmacol Exp Ther; 1992 Jul; 262(1):109-13. PubMed ID: 1320681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitation of [3H]ouabain binding and turnover of Na-K-ATPase along the rabbit nephron.
    El Mernissi G; Doucet A
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F158-67. PubMed ID: 6331200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silver ion (Ag+)-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents.
    Kone BC; Kaleta M; Gullans SR
    J Membr Biol; 1988 Apr; 102(1):11-9. PubMed ID: 2456393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
    Layton AT; Edwards A; Vallon V
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F199-F209. PubMed ID: 28331059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential effects of histamine H2 receptor antagonists on amantadine uptake in the rat renal cortical slice, isolated proximal tubule and distal tubule.
    Wong LT; Smyth DD; Sitar DS
    J Pharmacol Exp Ther; 1991 Jul; 258(1):320-4. PubMed ID: 2072304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arginine synthesis by the proximal convoluted tubule in rats with chronic renal failure.
    Bouby N; Coutaud C; Bankir L
    Miner Electrolyte Metab; 1992; 18(2-5):101-3. PubMed ID: 1465041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased sodium transport by cortical collecting tubules from remnant kidneys.
    Vehaskari VM; Hering-Smith KS; Klahr S; Hamm LL
    Kidney Int; 1989 Jul; 36(1):89-95. PubMed ID: 2811058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The renal Na+/Ca2+ exchange system is located exclusively in the distal tubule.
    Ramachandran C; Brunette MG
    Biochem J; 1989 Jan; 257(1):259-64. PubMed ID: 2920016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potassium transport in the rabbit renal proximal tubule: effects of barium, ouabain, valinomycin, and other ionophores.
    Soltoff SP; Mandel LJ
    J Membr Biol; 1986; 94(2):153-61. PubMed ID: 3031306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.