BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24133677)

  • 1. Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol.
    Zengin A; Yildirim E; Tamer U; Caykara T
    Analyst; 2013 Dec; 138(23):7238-45. PubMed ID: 24133677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synthesis of magnetic lysozyme-imprinted polymers by means of distillation-precipitation polymerization for selective protein enrichment.
    Cao J; Zhang X; He X; Chen L; Zhang Y
    Chem Asian J; 2014 Feb; 9(2):526-33. PubMed ID: 24203562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine.
    He Y; Huang Y; Jin Y; Liu X; Liu G; Zhao R
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9634-42. PubMed ID: 24853973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of monodispersed molecularly imprinted polymer particles for high-performance liquid chromatographic separation of cholesterol using templating polymerization in porous silica gel bound with cholesterol molecules on its surface.
    Kitahara K; Yoshihama I; Hanada T; Kokuba H; Arai S
    J Chromatogr A; 2010 Nov; 1217(46):7249-54. PubMed ID: 20934706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin.
    Li L; He X; Chen L; Zhang Y
    Chem Asian J; 2009 Feb; 4(2):286-93. PubMed ID: 19040251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2,4-dichlorophenoxyacetic acid in real samples.
    Sheng L; Jin Y; He Y; Huang Y; Yan L; Zhao R
    Talanta; 2017 Nov; 174():725-732. PubMed ID: 28738649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of multi-core-shell magnetic molecularly imprinted microspheres for rapid recognition of dicofol in tea.
    Yan H; Cheng X; Sun N
    J Agric Food Chem; 2013 Mar; 61(11):2896-901. PubMed ID: 23432386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering.
    Xue JQ; Li DW; Qu LL; Long YT
    Anal Chim Acta; 2013 May; 777():57-62. PubMed ID: 23622965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superparamagnetic surface molecularly imprinted nanoparticles for water-soluble pefloxacin mesylate prepared via surface initiated atom transfer radical polymerization and its application in egg sample analysis.
    Liu Y; Huang Y; Liu J; Wang W; Liu G; Zhao R
    J Chromatogr A; 2012 Jul; 1246():15-21. PubMed ID: 22321951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition.
    Wang X; Wang L; He X; Zhang Y; Chen L
    Talanta; 2009 Apr; 78(2):327-32. PubMed ID: 19203590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal.
    Feng L; Cao M; Ma X; Zhu Y; Hu C
    J Hazard Mater; 2012 May; 217-218():439-46. PubMed ID: 22494901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling size and uniformity of molecularly imprinted nanoparticles using auxiliary template.
    Chen Z; Ye L
    J Mol Recognit; 2012 Jun; 25(6):370-6. PubMed ID: 22641535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific recognition of bovine serum albumin using superparamagnetic molecularly imprinted nanomaterials prepared by two-stage core-shell sol-gel polymerization.
    Gao R; Mu X; Zhang J; Tang Y
    J Mater Chem B; 2014 Feb; 2(7):783-792. PubMed ID: 32261310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization.
    Reddy KR; Park W; Sin BC; Noh J; Lee Y
    J Colloid Interface Sci; 2009 Jul; 335(1):34-9. PubMed ID: 19423124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A core-shell surface magnetic molecularly imprinted polymers with fluorescence for λ-cyhalothrin selective recognition.
    Gao L; Wang J; Li X; Yan Y; Li C; Pan J
    Anal Bioanal Chem; 2014 Nov; 406(28):7213-20. PubMed ID: 25200071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superparamagnetic surface molecularly imprinted nanoparticles for sensitive solid-phase extraction of tramadol from urine samples.
    Madrakian T; Afkhami A; Mahmood-Kashani H; Ahmadi M
    Talanta; 2013 Feb; 105():255-61. PubMed ID: 23598016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition.
    Lan F; Ma S; Yang Q; Xie L; Wu Y; Gu Z
    Colloids Surf B Biointerfaces; 2014 Nov; 123():213-8. PubMed ID: 25288533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization.
    Tan CJ; Chua HG; Ker KH; Tong YW
    Anal Chem; 2008 Feb; 80(3):683-92. PubMed ID: 18181645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization.
    Lan F; Liu KX; Jiang W; Zeng XB; Wu Y; Gu ZW
    Nanotechnology; 2011 Jun; 22(22):225604. PubMed ID: 21454944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile and straightforward synthesis of superparamagnetic reduced graphene oxide-Fe3O4 hybrid composite by a solvothermal reaction.
    Liu YW; Guan MX; Feng L; Deng SL; Bao JF; Xie SY; Chen Z; Huang RB; Zheng LS
    Nanotechnology; 2013 Jan; 24(2):025604. PubMed ID: 23220906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.