These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24134390)

  • 21. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.
    Wu JC; Gardner DP; Ozer S; Gutell RR; Ren P
    J Mol Biol; 2009 Aug; 391(4):769-83. PubMed ID: 19540243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleotide sequence and secondary structure of 5S rRNA from Sphingobium chungbukense DJ77.
    Kwon HR; Kim YC
    J Microbiol; 2007 Feb; 45(1):79-82. PubMed ID: 17342061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary structural elements exclusive to the sequences flanking ribosomal RNAs lend support to the monophyletic nature of the archaebacteria.
    Kjems J; Garrett RA
    J Mol Evol; 1990 Jul; 31(1):25-32. PubMed ID: 1696321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suprageneric classification of thermoactinomyces vulgaris by nucleotide sequencing of 5S ribosomal RNA.
    Park YH; Kim E; Yim DG; Kho YH; Mheen TI; Goodfellow M
    Zentralbl Bakteriol; 1993 Jun; 278(4):469-78. PubMed ID: 7688999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nucleotide sequence of 5 S ribosomal RNA from Vibrio marinus.
    MacDonell MT; Colwell RR
    Microbiol Sci; 1984 Dec; 1(9):229-31. PubMed ID: 6086080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNAconTest: comparing tools for noncoding RNA multiple sequence alignment based on structural consistency.
    Wright ES
    RNA; 2020 May; 26(5):531-540. PubMed ID: 32005745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rfold: an exact algorithm for computing local base pairing probabilities.
    Kiryu H; Kin T; Asai K
    Bioinformatics; 2008 Feb; 24(3):367-73. PubMed ID: 18056736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the errors of SHAPE-directed RNA structure modeling.
    Kladwang W; VanLang CC; Cordero P; Das R
    Biochemistry; 2011 Sep; 50(37):8049-56. PubMed ID: 21842868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA secondary structure prediction based on free energy and phylogenetic analysis.
    Juan V; Wilson C
    J Mol Biol; 1999 Jun; 289(4):935-47. PubMed ID: 10369773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On comparing two structured RNA multiple alignments.
    Patel V; Wang JT; Setia S; Verma A; Warden CD; Zhang K
    J Bioinform Comput Biol; 2010 Dec; 8(6):967-80. PubMed ID: 21121021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The 5S rRNA and the rRNA intergenic spacer of the two varieties of Cryptococcus neoformans.
    Fan M; Chen LC; Ragan MA; Gutell RR; Warner JR; Currie BP; Casadevall A
    J Med Vet Mycol; 1995; 33(4):215-21. PubMed ID: 8531018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleotide sequences of the spacer-1, spacer-2 and trailer regions of the rrn operons and secondary structures of precursor 23S rRNAs and precursor 5S rRNAs of slow-growing mycobacteria.
    Ji YE; Kempsell KE; Colston MJ; Cox RA
    Microbiology (Reading); 1994 Jul; 140 ( Pt 7)():1763-73. PubMed ID: 7521248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA Secondary Structure Alteration Caused by Single Nucleotide Variants.
    Kawaguchi RK; Kiryu H
    Methods Mol Biol; 2023; 2586():107-120. PubMed ID: 36705901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 16S-23S and 23S-5S intergenic spacer regions of lactobacilli: nucleotide sequence, secondary structure and comparative analysis.
    Nour M
    Res Microbiol; 1998 Jun; 149(6):433-48. PubMed ID: 9766243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural alignment of RNA with triple helix structure.
    Wong TK; Yiu SM
    J Comput Biol; 2012 Apr; 19(4):365-78. PubMed ID: 22468707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Characterization of 5S rRNA gene sequence and secondary structure in gymnosperms].
    Liu ZL; Zhang DM; Wang XR
    Yi Chuan Xue Bao; 2003 Jan; 30(1):88-96. PubMed ID: 12812082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of ribosomal RNA genes from a Loofah witches' broom phytoplasma.
    Ho KC; Tsai CC; Chung TL
    DNA Cell Biol; 2001 Feb; 20(2):115-22. PubMed ID: 11244569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resurrection of an ancestral 5S rRNA.
    Lu Q; Fox GE
    BMC Evol Biol; 2011 Jul; 11():218. PubMed ID: 21781330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli.
    Kitahara K; Yasutake Y; Miyazaki K
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19220-5. PubMed ID: 23112186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient and Accurate OTU Clustering with GPU-Based Sequence Alignment and Dynamic Dendrogram Cutting.
    Nguyen TD; Schmidt B; Zheng Z; Kwoh CK
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1060-73. PubMed ID: 26451819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.