These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24134541)

  • 1. SiC2 siligraphene and nanotubes: novel donor materials in excitonic solar cells.
    Zhou LJ; Zhang YF; Wu LM
    Nano Lett; 2013; 13(11):5431-6. PubMed ID: 24134541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SiC7 siligraphene: a novel donor material with extraordinary sunlight absorption.
    Dong H; Zhou L; Frauenheim T; Hou T; Lee ST; Li Y
    Nanoscale; 2016 Apr; 8(13):6994-9. PubMed ID: 26980670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A graphene-like Mg
    Liu PF; Zhou L; Frauenheim T; Wu LM
    Phys Chem Chem Phys; 2016 Nov; 18(44):30379-30384. PubMed ID: 27785496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SiC2 silagraphene and its one-dimensional derivatives: where planar tetracoordinate silicon happens.
    Li Y; Li F; Zhou Z; Chen Z
    J Am Chem Soc; 2011 Feb; 133(4):900-8. PubMed ID: 21182250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Direct Semiconductor Boron Monochalcogenide γ-BTe: Room-Temperature Single-Bound Exciton and Novel Donor Material in Excitonic Solar Cells.
    Xu Y; Liu Y; Chen Y; Zhang Y; Ma C; Zhang H; Sun S; Ji Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58349-58359. PubMed ID: 33326219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconducting monolayer materials as a tunable platform for excitonic solar cells.
    Bernardi M; Palummo M; Grossman JC
    ACS Nano; 2012 Nov; 6(11):10082-9. PubMed ID: 23062107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative Poisson's ratio and high-mobility transport anisotropy in SiC
    Liu X; Shao X; Yang B; Zhao M
    Nanoscale; 2018 Jan; 10(4):2108-2114. PubMed ID: 29323686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tweaking the Physics of Interfaces between Monolayers of Buckled Cadmium Sulfide for a Superhigh Piezoelectricity, Excitonic Solar Cell Efficiency, and Thermoelectricity.
    Mohanta MK; Sarkar A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18123-18137. PubMed ID: 32223217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Structures of Penta-SiC
    Liu Z; Liu X; Wang J
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacing Boron Monophosphide with Molybdenum Disulfide for an Ultrahigh Performance in Thermoelectrics, Two-Dimensional Excitonic Solar Cells, and Nanopiezotronics.
    Mohanta MK; Rawat A; Jena N; Dimple ; Ahammed R; De Sarkar A
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3114-3126. PubMed ID: 31904214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional silicon crystals with sizable band gaps and ultrahigh carrier mobility.
    Zhuo Z; Wu X; Yang J
    Nanoscale; 2018 Jan; 10(3):1265-1271. PubMed ID: 29292469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring planar and nonplanar siligraphene: a first-principles study.
    Tang X; Liu W; Luo C; Peng X; Zhong J
    RSC Adv; 2019 Apr; 9(22):12276-12281. PubMed ID: 35515818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics.
    Cheng P; Yang Y
    Acc Chem Res; 2020 Jun; 53(6):1218-1228. PubMed ID: 32407622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of silicon-based layered structures for optoelectronic applications.
    Luo W; Ma Y; Gong X; Xiang H
    J Am Chem Soc; 2014 Nov; 136(45):15992-7. PubMed ID: 25314126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving a direct band gap and high power conversion efficiency in an SbI
    Lai K; Li H; Xu YK; Zhang WB; Dai J
    Phys Chem Chem Phys; 2019 Jan; 21(5):2619-2627. PubMed ID: 30657497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field effects on the electronic properties of the silicene-amine interface.
    Iida K; Nobusada K
    Phys Chem Chem Phys; 2016 Jun; 18(23):15639-44. PubMed ID: 27222075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes.
    Camacho-Mojica DC; López-Urías F
    Sci Rep; 2015 Dec; 5():17902. PubMed ID: 26658148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MoS
    Najafi L; Taheri B; Martín-García B; Bellani S; Di Girolamo D; Agresti A; Oropesa-Nuñez R; Pescetelli S; Vesce L; Calabrò E; Prato M; Del Rio Castillo AE; Di Carlo A; Bonaccorso F
    ACS Nano; 2018 Nov; 12(11):10736-10754. PubMed ID: 30240189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sizable Band Gap in Epitaxial Bilayer Graphene Induced by Silicene Intercalation.
    Guo H; Zhang R; Li H; Wang X; Lu H; Qian K; Li G; Huang L; Lin X; Zhang YY; Ding H; Du S; Pantelides ST; Gao HJ
    Nano Lett; 2020 Apr; 20(4):2674-2680. PubMed ID: 32125162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap.
    Yao H; Cui Y; Yu R; Gao B; Zhang H; Hou J
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):3045-3049. PubMed ID: 28145632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.