BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

616 related articles for article (PubMed ID: 24134808)

  • 1. Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology.
    Ruan J; Jiang L; Chong Z; Gong Q; Li H; Li C; Tao Y; Zheng C; Zhai W; Turissini D; Cannon CH; Lu X; Wu CI
    BMC Genomics; 2013 Oct; 14(1):711. PubMed ID: 24134808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome.
    Stadermann KB; Weisshaar B; Holtgräwe D
    BMC Bioinformatics; 2015 Sep; 16(1):295. PubMed ID: 26377912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing information in Next-Generation-Sequencing (NGS) reads for improving de novo genome assembly.
    Liu T; Tsai CH; Lee WB; Chiang JH
    PLoS One; 2013; 8(7):e69503. PubMed ID: 23922726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GapFiller: a de novo assembly approach to fill the gap within paired reads.
    Nadalin F; Vezzi F; Policriti A
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S8. PubMed ID: 23095524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing.
    Chen TW; Gan RC; Chang YF; Liao WC; Wu TH; Lee CC; Huang PJ; Lee CY; Chen YY; Chiu CH; Tang P
    BMC Genomics; 2015 Aug; 16(1):648. PubMed ID: 26315384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40.
    Umemura M; Koyama Y; Takeda I; Hagiwara H; Ikegami T; Koike H; Machida M
    PLoS One; 2013; 8(5):e63673. PubMed ID: 23667655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome assembly using Nanopore-guided long and error-free DNA reads.
    Madoui MA; Engelen S; Cruaud C; Belser C; Bertrand L; Alberti A; Lemainque A; Wincker P; Aury JM
    BMC Genomics; 2015 Apr; 16(1):327. PubMed ID: 25927464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous compression of multiple error-corrected short-read sets for faster data transmission and better de novo assemblies.
    Tang T; Hutvagner G; Wang W; Li J
    Brief Funct Genomics; 2022 Sep; 21(5):387-398. PubMed ID: 35848773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CAREx: context-aware read extension of paired-end sequencing data.
    Kallenborn F; Schmidt B
    BMC Bioinformatics; 2024 May; 25(1):186. PubMed ID: 38730374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements.
    McCoy RC; Taylor RW; Blauwkamp TA; Kelley JL; Kertesz M; Pushkarev D; Petrov DA; Fiston-Lavier AS
    PLoS One; 2014; 9(9):e106689. PubMed ID: 25188499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and application of pseudo-long reads for metagenome assembly.
    Sim M; Lee J; Wy S; Park N; Lee D; Kwon D; Kim J
    Gigascience; 2022 May; 11():. PubMed ID: 35579554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Software for pre-processing Illumina next-generation sequencing short read sequences.
    Chen C; Khaleel SS; Huang H; Wu CH
    Source Code Biol Med; 2014; 9():8. PubMed ID: 24955109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments.
    Kosugi S; Hirakawa H; Tabata S
    Bioinformatics; 2015 Dec; 31(23):3733-41. PubMed ID: 26261222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads.
    Liao X; Gao X; Zhang X; Wu FX; Wang J
    BMC Bioinformatics; 2020 Oct; 21(1):463. PubMed ID: 33076827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.