These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24135050)

  • 1. Pseudopotential-based studies of electron transport in graphene and graphene nanoribbons.
    Fischetti MV; Kim J; Narayanan S; Ong ZY; Sachs C; Ferry DK; Aboud SJ
    J Phys Condens Matter; 2013 Nov; 25(47):473202. PubMed ID: 24135050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-Empirical Pseudopotential Method for Graphene and Graphene Nanoribbons.
    Paudel RK; Ren CY; Chang YC
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impurity and edge roughness scattering in graphene nanoribbons: the Boltzmann approach.
    Xu H; Heinzel T
    J Phys Condens Matter; 2012 Nov; 24(45):455303. PubMed ID: 23092815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of phonon anomaly at the armchair edge of single-layer graphene in air.
    Zhang W; Li LJ
    ACS Nano; 2011 Apr; 5(4):3347-53. PubMed ID: 21388225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphene nanoribbons.
    Zhang D; Yang J; Li Y
    Small; 2013 Apr; 9(8):1284-304. PubMed ID: 23529997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation.
    Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton and phonon dynamics in highly aligned 7-atom wide armchair graphene nanoribbons as seen by time-resolved spontaneous Raman scattering.
    Zhu J; German R; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; van Loosdrecht PHM
    Nanoscale; 2018 Sep; 10(37):17975-17982. PubMed ID: 30226260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical transport properties of graphene nanoribbons produced from sonicating graphite in solution.
    Ling C; Setzler G; Lin MW; Dhindsa KS; Jin J; Yoon HJ; Kim SS; Ming-Cheng Cheng M; Widjaja N; Zhou Z
    Nanotechnology; 2011 Aug; 22(32):325201. PubMed ID: 21757795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of edge-dependent optical selection rules for graphene nanoribbons.
    Chung HC; Lee MH; Chang CP; Lin MF
    Opt Express; 2011 Nov; 19(23):23350-63. PubMed ID: 22109212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons.
    Ivanov I; Hu Y; Osella S; Beser U; Wang HI; Beljonne D; Narita A; Müllen K; Turchinovich D; Bonn M
    J Am Chem Soc; 2017 Jun; 139(23):7982-7988. PubMed ID: 28525278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability conditions of armchair graphene nanoribbon bipolarons.
    Abreu AVP; Ribeiro Junior LA; Silva GG; Pereira Junior ML; Enders BG; Fonseca ALA; E Silva GM
    J Mol Model; 2019 Jul; 25(8):245. PubMed ID: 31342176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale solution synthesis of narrow graphene nanoribbons.
    Vo TH; Shekhirev M; Kunkel DA; Morton MD; Berglund E; Kong L; Wilson PM; Dowben PA; Enders A; Sinitskii A
    Nat Commun; 2014; 5():3189. PubMed ID: 24510014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons.
    Xie G; Shen Y
    Phys Chem Chem Phys; 2015 Apr; 17(14):8822-7. PubMed ID: 25743638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond graphene: stable elemental monolayers of silicene and germanene.
    Roome NJ; Carey JD
    ACS Appl Mater Interfaces; 2014 May; 6(10):7743-50. PubMed ID: 24724967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons.
    Liang X; Wi S
    ACS Nano; 2012 Nov; 6(11):9700-10. PubMed ID: 23078122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bond length pattern associated with charge carriers in armchair graphene nanoribbons.
    Teixeira JF; de Oliveira Neto PH; da Cunha WF; Ribeiro LA; E Silva GM
    J Mol Model; 2017 Sep; 23(10):293. PubMed ID: 28951991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.