BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1317 related articles for article (PubMed ID: 24136345)

  • 1. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
    Larson MH; Gilbert LA; Wang X; Lim WA; Weissman JS; Qi LS
    Nat Protoc; 2013 Nov; 8(11):2180-96. PubMed ID: 24136345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional Knockdown in Pneumococci Using CRISPR Interference.
    Kjos M
    Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR interference and its applications.
    Ghavami S; Pandi A
    Prog Mol Biol Transl Sci; 2021; 180():123-140. PubMed ID: 33934834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens.
    Kim SK; Kim H; Ahn WC; Park KH; Woo EJ; Lee DH; Lee SG
    ACS Synth Biol; 2017 Jul; 6(7):1273-1282. PubMed ID: 28375596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
    Banta AB; Ward RD; Tran JS; Bacon EE; Peters JM
    Curr Protoc Microbiol; 2020 Dec; 59(1):e130. PubMed ID: 33332762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Gordon GC; Korosh TC; Cameron JC; Markley AL; Begemann MB; Pfleger BF
    Metab Eng; 2016 Nov; 38():170-179. PubMed ID: 27481676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional repression of endogenous genes in BmE cells using CRISPRi system.
    Wang X; Ma S; Liu Y; Lu W; Sun L; Zhao P; Xia Q
    Insect Biochem Mol Biol; 2019 Aug; 111():103172. PubMed ID: 31103783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform.
    Rock JM; Hopkins FF; Chavez A; Diallo M; Chase MR; Gerrick ER; Pritchard JR; Church GM; Rubin EJ; Sassetti CM; Schnappinger D; Fortune SM
    Nat Microbiol; 2017 Feb; 2():16274. PubMed ID: 28165460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile.
    Müh U; Pannullo AG; Weiss DS; Ellermeier CD
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis.
    Mo XH; Zhang H; Wang TM; Zhang C; Zhang C; Xing XH; Yang S
    Appl Microbiol Biotechnol; 2020 May; 104(10):4515-4532. PubMed ID: 32215707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Broad-Host-Range CRISPRi Toolkit for Silencing Gene Expression in
    Hogan AM; Rahman ASMZ; Lightly TJ; Cardona ST
    ACS Synth Biol; 2019 Oct; 8(10):2372-2384. PubMed ID: 31491085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPRi-Driven Genetic Screening for Designing Novel Microbial Phenotypes.
    Kang M; Kim K; Cho BK
    Methods Mol Biol; 2024; 2760():117-132. PubMed ID: 38468085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR interference (CRISPRi) as transcriptional repression tool for Hungateiclostridium thermocellum DSM 1313.
    Ganguly J; Martin-Pascual M; van Kranenburg R
    Microb Biotechnol; 2020 Mar; 13(2):339-349. PubMed ID: 31802632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of CRISPR interference on strain development in biotechnology.
    Schultenkämper K; Brito LF; Wendisch VF
    Biotechnol Appl Biochem; 2020 Jan; 67(1):7-21. PubMed ID: 32064678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR Interference-Potential Application in Retinal Disease.
    Peddle CF; Fry LE; McClements ME; MacLaren RE
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32230903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribozyme-mediated, multiplex CRISPR gene editing and CRISPR interference (CRISPRi) in rodent-infectious
    Walker MP; Lindner SE
    J Biol Chem; 2019 Jun; 294(24):9555-9566. PubMed ID: 31043479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 66.