These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24136360)

  • 1. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries.
    Ebner M; Marone F; Stampanoni M; Wood V
    Science; 2013 Nov; 342(6159):716-20. PubMed ID: 24136360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating Lithium Alloying-Induced Degradation Evolution in High-Capacity Electrodes.
    Juarez-Robles D; Gonzalez-Malabet HJ; L'Antigua M; Xiao X; Nelson GJ; Mukherjee PP
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):563-577. PubMed ID: 30561180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li ion battery materials with core-shell nanostructures.
    Su L; Jing Y; Zhou Z
    Nanoscale; 2011 Oct; 3(10):3967-83. PubMed ID: 21879116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ three-dimensional synchrotron X-Ray nanotomography of the (de)lithiation processes in tin anodes.
    Wang J; Chen-Wiegart YC; Wang J
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4460-4. PubMed ID: 24648150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery.
    Sun F; Markötter H; Zhou D; Alrwashdeh SS; Hilger A; Kardjilov N; Manke I; Banhart J
    ChemSusChem; 2016 May; 9(9):946-50. PubMed ID: 27076373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High-Speed Operando Tomography and Digital Volume Correlation.
    Finegan DP; Tudisco E; Scheel M; Robinson JB; Taiwo OO; Eastwood DS; Lee PD; Di Michiel M; Bay B; Hall SA; Hinds G; Brett DJ; Shearing PR
    Adv Sci (Weinh); 2016 Mar; 3(3):1500332. PubMed ID: 27610334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent fracture of silicon nanoparticles during lithiation.
    Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY
    ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.
    Misra S; Liu N; Nelson J; Hong SS; Cui Y; Toney MF
    ACS Nano; 2012 Jun; 6(6):5465-73. PubMed ID: 22558938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexagonal-shaped tin glycolate particles: a preliminary study of their suitability as li-ion insertion electrodes.
    Ng SH; Chew SY; Dos Santos DI; Chen J; Wang JZ; Dou SX; Liu HK
    Chem Asian J; 2008 May; 3(5):854-61. PubMed ID: 18383054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ quantification and visualization of lithium transport with neutrons.
    Liu DX; Wang J; Pan K; Qiu J; Canova M; Cao LR; Co AC
    Angew Chem Int Ed Engl; 2014 Sep; 53(36):9498-502. PubMed ID: 25044527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation.
    Kim SY; Ostadhossein A; van Duin AC; Xiao X; Gao H; Qi Y
    Phys Chem Chem Phys; 2016 Feb; 18(5):3706-15. PubMed ID: 26760786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries.
    Schmuelling G; Oehl N; Knipper M; Kolny-Olesiak J; Plaggenborg T; Meyer HW; Placke T; Parisi J; Winter M
    Nanotechnology; 2014 Sep; 25(35):355401. PubMed ID: 25116171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries.
    Shi F; Song Z; Ross PN; Somorjai GA; Ritchie RO; Komvopoulos K
    Nat Commun; 2016 Jun; 7():11886. PubMed ID: 27297565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Focused Ion Beam Scanning Electron Microscope Study of Microstructural Evolution of Single Tin Particle Anode for Li-Ion Batteries.
    Zhou X; Li T; Cui Y; Fu Y; Liu Y; Zhu L
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1733-1738. PubMed ID: 30605303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.