These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Fernández-Acero FJ; Colby T; Harzen A; Carbú M; Wieneke U; Cantoral JM; Schmidt J Proteomics; 2010 Jun; 10(12):2270-80. PubMed ID: 20376862 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. González-Fernández R; Aloria K; Valero-Galván J; Redondo I; Arizmendi JM; Jorrín-Novo JV J Proteomics; 2014 Jan; 97():195-221. PubMed ID: 23811051 [TBL] [Abstract][Full Text] [Related]
8. Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics. Kniemeyer O; Schmidt AD; Vödisch M; Wartenberg D; Brakhage AA Int J Med Microbiol; 2011 Jun; 301(5):368-77. PubMed ID: 21565549 [TBL] [Abstract][Full Text] [Related]
9. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. Li B; Wang W; Zong Y; Qin G; Tian S J Proteome Res; 2012 Aug; 11(8):4249-60. PubMed ID: 22746291 [TBL] [Abstract][Full Text] [Related]
10. Application of label-free shotgun nUPLC-MS(E) and 2-DE approaches in the study of Botrytis cinerea mycelium. Gonzalez-Fernandez R; Aloria K; Arizmendi JM; Jorrin-Novo JV J Proteome Res; 2013 Jun; 12(6):3042-56. PubMed ID: 23627497 [TBL] [Abstract][Full Text] [Related]
11. Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation. Escobar-Niño A; Liñeiro E; Amil F; Carrasco R; Chiva C; Fuentes C; Blanco-Ulate B; Cantoral Fernández JM; Sabidó E; Fernández-Acero FJ Sci Rep; 2019 Jul; 9(1):9860. PubMed ID: 31285484 [TBL] [Abstract][Full Text] [Related]
12. Hunting down fungal secretomes using liquid-phase IEF prior to high resolution 2-DE. Vincent D; Balesdent MH; Gibon J; Claverol S; Lapaillerie D; Lomenech AM; Blaise F; Rouxel T; Martin F; Bonneu M; Amselem J; Dominguez V; Howlett BJ; Wincker P; Joets J; Lebrun MH; Plomion C Electrophoresis; 2009 Dec; 30(23):4118-36. PubMed ID: 19960477 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Fernández-Acero FJ; Jorge I; Calvo E; Vallejo I; Carbú M; Camafeita E; Garrido C; López JA; Jorrin J; Cantoral JM Arch Microbiol; 2007 Mar; 187(3):207-15. PubMed ID: 17124592 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the cell wall of the ubiquitous plant pathogen Botrytis cinerea. Cantu D; Greve LC; Labavitch JM; Powell AL Mycol Res; 2009 Dec; 113(Pt 12):1396-403. PubMed ID: 19781643 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Different Protein Extraction Methods for Gel-Based Proteomic Analysis of Ganoderma spp. Al-Obaidi JR; Saidi NB; Usuldin SR; Hussin SN; Yusoff NM; Idris AS Protein J; 2016 Apr; 35(2):100-6. PubMed ID: 27016942 [TBL] [Abstract][Full Text] [Related]
17. Development and application of proteomics technologies in Saccharomyces cerevisiae. Kolkman A; Slijper M; Heck AJ Trends Biotechnol; 2005 Dec; 23(12):598-604. PubMed ID: 16202464 [TBL] [Abstract][Full Text] [Related]
19. Proteomic approach to identify champagne wine proteins as modified by Botrytis cinerea infection. Cilindre C; Jégou S; Hovasse A; Schaeffer C; Castro AJ; Clément C; Van Dorsselaer A; Jeandet P; Marchal R J Proteome Res; 2008 Mar; 7(3):1199-208. PubMed ID: 18205300 [TBL] [Abstract][Full Text] [Related]
20. Proteomic analysis of the inhibitory effect of oligochitosan on the fungal pathogen, Botrytis cinerea. Sui Y; Ma Z; Meng X J Sci Food Agric; 2019 Mar; 99(5):2622-2628. PubMed ID: 30417388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]