These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Plant cell organelle proteomics in response to abiotic stress. Hossain Z; Nouri MZ; Komatsu S J Proteome Res; 2012 Jan; 11(1):37-48. PubMed ID: 22029473 [TBL] [Abstract][Full Text] [Related]
4. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. Wang X; Komatsu S J Proteomics; 2016 Jun; 143():45-56. PubMed ID: 26808589 [TBL] [Abstract][Full Text] [Related]
5. Soybean proteomics and its application to functional analysis. Komatsu S; Ahsan N J Proteomics; 2009 Apr; 72(3):325-36. PubMed ID: 19022415 [TBL] [Abstract][Full Text] [Related]
6. Proteomics techniques for the development of flood tolerant crops. Komatsu S; Hiraga S; Yanagawa Y J Proteome Res; 2012 Jan; 11(1):68-78. PubMed ID: 22029422 [TBL] [Abstract][Full Text] [Related]
7. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean. Wang X; Komatsu S Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33053653 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Arai Y; Hayashi M; Nishimura M Plant Cell Physiol; 2008 Apr; 49(4):526-39. PubMed ID: 18281324 [TBL] [Abstract][Full Text] [Related]
10. Proteomic Techniques and Management of Flooding Tolerance in Soybean. Komatsu S; Tougou M; Nanjo Y J Proteome Res; 2015 Sep; 14(9):3768-78. PubMed ID: 26234743 [TBL] [Abstract][Full Text] [Related]
11. Analysis of plasma membrane proteome in soybean and application to flooding stress response. Komatsu S; Wada T; Abaléa Y; Nouri MZ; Nanjo Y; Nakayama N; Shimamura S; Yamamoto R; Nakamura T; Furukawa K J Proteome Res; 2009 Oct; 8(10):4487-99. PubMed ID: 19658398 [TBL] [Abstract][Full Text] [Related]
12. 'Omics' techniques for identifying flooding-response mechanisms in soybean. Komatsu S; Shirasaka N; Sakata K J Proteomics; 2013 Nov; 93():169-78. PubMed ID: 23313220 [TBL] [Abstract][Full Text] [Related]
13. Potentiality of Soybean Proteomics in Untying the Mechanism of Flood and Drought Stress Tolerance. Hossain Z; Komatsu S Proteomes; 2014 Mar; 2(1):107-127. PubMed ID: 28250373 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. Komatsu S; Yamamoto A; Nakamura T; Nouri MZ; Nanjo Y; Nishizawa K; Furukawa K J Proteome Res; 2011 Sep; 10(9):3993-4004. PubMed ID: 21766870 [TBL] [Abstract][Full Text] [Related]
15. Plant nuclear proteomics for unraveling physiological function. Yin X; Komatsu S N Biotechnol; 2016 Sep; 33(5 Pt B):644-654. PubMed ID: 27004615 [TBL] [Abstract][Full Text] [Related]
17. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Guo W; Zhao J; Li X; Qin L; Yan X; Liao H Plant J; 2011 May; 66(3):541-52. PubMed ID: 21261763 [TBL] [Abstract][Full Text] [Related]
18. Proteomic insights into synthesis of isoflavonoids in soybean seeds. Dastmalchi M; Dhaubhadel S Proteomics; 2015 May; 15(10):1646-57. PubMed ID: 25757747 [TBL] [Abstract][Full Text] [Related]
19. Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Ahsan N; Nanjo Y; Sawada H; Kohno Y; Komatsu S Proteomics; 2010 Jul; 10(14):2605-19. PubMed ID: 20443193 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Analysis of CCA1-Like Proteins in Soybean and Functional Characterization of GmMYB138a. Bian S; Jin D; Li R; Xie X; Gao G; Sun W; Li Y; Zhai L; Li X Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28937654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]