These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24136601)

  • 21. Semi-automated, single-band peak-fitting analysis of hydroxyl radical nucleic acid footprint autoradiograms for the quantitative analysis of transitions.
    Takamoto K; Chance MR; Brenowitz M
    Nucleic Acids Res; 2004 Aug; 32(15):E119. PubMed ID: 15319447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A powerful approach for the selection of 2-aminopurine substitution sites to investigate RNA folding.
    Soulière MF; Haller A; Rieder R; Micura R
    J Am Chem Soc; 2011 Oct; 133(40):16161-7. PubMed ID: 21882876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping RNA structure in vitro using nucleobase-specific probes.
    Sachsenmaier N; Handl S; Debeljak F; Waldsich C
    Methods Mol Biol; 2014; 1086():79-94. PubMed ID: 24136599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hepatitis delta virus ribozymes fold to generate a solvent-inaccessible core with essential nucleotides near the cleavage site phosphate.
    Rosenstein SP; Been MD
    Biochemistry; 1996 Sep; 35(35):11403-13. PubMed ID: 8784196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directed hydroxyl radical probing using iron(II) tethered to RNA.
    Joseph S; Noller HF
    Methods Enzymol; 2000; 318():175-90. PubMed ID: 10889988
    [No Abstract]   [Full Text] [Related]  

  • 26. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping tRNA and 5S RNA tertiary structures by charge dependent Fe(II)-catalyzed cleavage.
    Zhong M; Kallenbach NR
    J Biomol Struct Dyn; 1994 Feb; 11(4):901-11. PubMed ID: 7515624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural methods for studying IRES function.
    Kieft JS; Costantino DA; Filbin ME; Hammond J; Pfingsten JS
    Methods Enzymol; 2007; 430():333-71. PubMed ID: 17913644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of nucleotide distances in RNA by means of copper phenanthroline-generated hydroxyl radical cleavage pattern.
    Hermann T; Heumann H
    RNA; 1995 Dec; 1(10):1009-17. PubMed ID: 8595556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting.
    Shcherbakova I; Brenowitz M
    Nat Protoc; 2008; 3(2):288-302. PubMed ID: 18274531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directed hydroxyl radical probing of 16S ribosomal RNA in 70S ribosomes from internal positions of the RNA.
    Newcomb LF; Noller HF
    Biochemistry; 1999 Jan; 38(3):945-51. PubMed ID: 9893990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-resolved hydroxyl radical footprinting of RNA with X-rays.
    Woodson SA; Deras ML; Brenowitz M
    Curr Protoc Nucleic Acid Chem; 2001 Nov; Chapter 11():Unit 11.6. PubMed ID: 18428832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Traditional Chemical Mapping of RNA Structure In Vitro and In Vivo.
    Fechter P; Parmentier D; Wu Z; Fuchsbauer O; Romby P; Marzi S
    Methods Mol Biol; 2016; 1490():83-103. PubMed ID: 27665595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localized influence of 2'-hydroxyl groups and helix geometry on protein recognition in the RNA major groove.
    Landt SG; Tipton AR; Frankel AD
    Biochemistry; 2005 May; 44(17):6547-58. PubMed ID: 15850388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-Directed Chemical Probing to map transient RNA/protein interactions.
    Duval M; Marenna A; Chevalier C; Marzi S
    Methods; 2017 Mar; 117():48-58. PubMed ID: 28027957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of rRNA cleavage by complementary 1,10-phenanthroline-Cu(II)- and EDTA-Fe(II)-derivatized oligonucleotides.
    Bowen WS; Hill WE; Lodmell JS
    Methods; 2001 Nov; 25(3):344-50. PubMed ID: 11860288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring global structural changes and specific metal-ion-binding sites in RNA by in-line probing and Tb(III) cleavage.
    Choudhary PK; Gallo S; Sigel RK
    Methods Mol Biol; 2014; 1086():143-58. PubMed ID: 24136602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ribosomal protein L15 as a probe of 50 S ribosomal subunit structure.
    Lieberman KR; Noller HF
    J Mol Biol; 1998 Dec; 284(5):1367-78. PubMed ID: 9878356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing DNA structure with hydroxyl radicals.
    Tullius TD
    Curr Protoc Nucleic Acid Chem; 2002 Feb; Chapter 6():Unit 6.7. PubMed ID: 18428898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical "footprinting".
    Brenowitz M; Chance MR; Dhavan G; Takamoto K
    Curr Opin Struct Biol; 2002 Oct; 12(5):648-53. PubMed ID: 12464318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.