BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24136607)

  • 1. RNA catalytic activity as a probe of chaperone-mediated RNA folding.
    Gracia B; Russell R
    Methods Mol Biol; 2014; 1086():225-37. PubMed ID: 24136607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA catalysis as a probe for chaperone activity of DEAD-box helicases.
    Potratz JP; Russell R
    Methods Enzymol; 2012; 511():111-30. PubMed ID: 22713317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding pathways of the Tetrahymena ribozyme.
    Mitchell D; Russell R
    J Mol Biol; 2014 Jun; 426(12):2300-12. PubMed ID: 24747051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
    Sinan S; Yuan X; Russell R
    J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.
    Jarmoskaite I; Bhaskaran H; Seifert S; Russell R
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2928-36. PubMed ID: 25002474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
    Tijerina P; Bhaskaran H; Russell R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme.
    Jarmoskaite I; Tijerina P; Russell R
    J Biol Chem; 2021; 296():100132. PubMed ID: 33262215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of RNA chaperone activity in vivo and in vitro using misfolded group I ribozymes.
    Semrad K
    Methods Mol Biol; 2014; 1086():239-54. PubMed ID: 24136608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The long-range P3 helix of the Tetrahymena ribozyme is disrupted during folding between the native and misfolded conformations.
    Mitchell D; Jarmoskaite I; Seval N; Seifert S; Russell R
    J Mol Biol; 2013 Aug; 425(15):2670-86. PubMed ID: 23702292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking Native
    Potratz JP; Russell R
    Biochemistry; 2023 Nov; 62(22):3173-3180. PubMed ID: 37910627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-facilitated folding of group II intron ribozymes.
    Fedorova O; Solem A; Pyle AM
    J Mol Biol; 2010 Apr; 397(3):799-813. PubMed ID: 20138894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetics of ribozyme cleavage: a tool to analyze RNA folding as a function of catalysis.
    Zingler N
    Methods Mol Biol; 2014; 1086():209-24. PubMed ID: 24136606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone.
    Bhaskaran H; Russell R
    Nature; 2007 Oct; 449(7165):1014-8. PubMed ID: 17960235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones.
    Thirumalai D; Lorimer GH; Hyeon C
    Protein Sci; 2020 Feb; 29(2):360-377. PubMed ID: 31800116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations.
    Heilman-Miller SL; Thirumalai D; Woodson SA
    J Mol Biol; 2001 Mar; 306(5):1157-66. PubMed ID: 11237624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA.
    Grohman JK; Del Campo M; Bhaskaran H; Tijerina P; Lambowitz AM; Russell R
    Biochemistry; 2007 Mar; 46(11):3013-22. PubMed ID: 17311413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA Structural Modules Control the Rate and Pathway of RNA Folding and Assembly.
    Gracia B; Xue Y; Bisaria N; Herschlag D; Al-Hashimi HM; Russell R
    J Mol Biol; 2016 Oct; 428(20):3972-3985. PubMed ID: 27452365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme.
    Russell R; Tijerina P; Chadee AB; Bhaskaran H
    Biochemistry; 2007 May; 46(17):4951-61. PubMed ID: 17419589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.