These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24136881)

  • 21. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis.
    Zheng H; Reetz MT
    J Am Chem Soc; 2010 Nov; 132(44):15744-51. PubMed ID: 20958062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.
    Gumulya Y; Reetz MT
    Chembiochem; 2011 Nov; 12(16):2502-10. PubMed ID: 21913300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Concepts for Increasing the Efficiency in Directed Evolution of Stereoselective Enzymes.
    Sun Z; Wikmark Y; Bäckvall JE; Reetz MT
    Chemistry; 2016 Apr; 22(15):5046-54. PubMed ID: 26914401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis.
    Prasad S; Bocola M; Reetz MT
    Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directed evolution by accumulating tailored mutations: thermostabilization of lactate oxidase with less trade-off with catalytic activity.
    Hamamatsu N; Nomiya Y; Aita T; Nakajima M; Husimi Y; Shibanaka Y
    Protein Eng Des Sel; 2006 Nov; 19(11):483-9. PubMed ID: 16951411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Addressing the numbers problem in directed evolution.
    Reetz MT; Kahakeaw D; Lohmer R
    Chembiochem; 2008 Jul; 9(11):1797-804. PubMed ID: 18567049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the substrate binding site of phenylacetone monooxygenase from Thermobifida fusca by mutational analysis.
    Dudek HM; de Gonzalo G; Pazmiño DE; Stepniak P; Wyrwicz LS; Rychlewski L; Fraaije MW
    Appl Environ Microbiol; 2011 Aug; 77(16):5730-8. PubMed ID: 21724896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering of LadA for enhanced hexadecane oxidation using random- and site-directed mutagenesis.
    Dong Y; Yan J; Du H; Chen M; Ma T; Feng L
    Appl Microbiol Biotechnol; 2012 May; 94(4):1019-29. PubMed ID: 22526792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blending Baeyer-Villiger monooxygenases: using a robust BVMO as a scaffold for creating chimeric enzymes with novel catalytic properties.
    van Beek HL; de Gonzalo G; Fraaije MW
    Chem Commun (Camb); 2012 Apr; 48(27):3288-90. PubMed ID: 22286124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Nonconserved hinge in Baeyer-Villiger monooxygenase affects catalytic activity and stereoselectivity].
    Liang Q; Wu S
    Sheng Wu Gong Cheng Xue Bao; 2015 Mar; 31(3):361-74. PubMed ID: 26204757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering cytochrome P450 monooxygenase CYP 116B3 for high dealkylation activity.
    Liu L; Schmid RD; Urlacher VB
    Biotechnol Lett; 2010 Jun; 32(6):841-5. PubMed ID: 20213524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases.
    Alphand V; Carrea G; Wohlgemuth R; Furstoss R; Woodley JM
    Trends Biotechnol; 2003 Jul; 21(7):318-23. PubMed ID: 12837617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis.
    Kille S; Acevedo-Rocha CG; Parra LP; Zhang ZG; Opperman DJ; Reetz MT; Acevedo JP
    ACS Synth Biol; 2013 Feb; 2(2):83-92. PubMed ID: 23656371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes.
    Reetz MT
    Ernst Schering Found Symp Proc; 2007; (2):321-40. PubMed ID: 18642531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extreme synergistic mutational effects in the directed evolution of a baeyer-villiger monooxygenase as catalyst for asymmetric sulfoxidation.
    Zhang ZG; Lonsdale R; Sanchis J; Reetz MT
    J Am Chem Soc; 2014 Dec; 136(49):17262-72. PubMed ID: 25394568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes.
    Qu G; Li A; Acevedo-Rocha CG; Sun Z; Reetz MT
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13204-13231. PubMed ID: 31267627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm.
    Feng X; Sanchis J; Reetz MT; Rabitz H
    Chemistry; 2012 Apr; 18(18):5646-54. PubMed ID: 22434591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermostabilization of an esterase by alignment-guided focussed directed evolution.
    Jochens H; Aerts D; Bornscheuer UT
    Protein Eng Des Sel; 2010 Dec; 23(12):903-9. PubMed ID: 20947674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of the biocatalytic properties of one phenylacetone monooxygenase mutant in hydrophilic organic solvents.
    de Gonzalo G; Rodríguez C; Rioz-Martínez A; Gotor V
    Enzyme Microb Technol; 2012 Jan; 50(1):43-9. PubMed ID: 22133439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.