These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 24137150)

  • 1. Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades.
    Jamadar SD; Fielding J; Egan GF
    Front Psychol; 2013; 4():749. PubMed ID: 24137150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA; Goltz HC; Brown MR; Everling S
    J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials.
    Brown MR; Goltz HC; Vilis T; Ford KA; Everling S
    Neuroimage; 2006 Nov; 33(2):644-59. PubMed ID: 16949303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetitive antisaccade execution does not increase the unidirectional prosaccade switch-cost.
    Weiler J; Heath M
    Acta Psychol (Amst); 2014 Feb; 146():67-72. PubMed ID: 24412836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.
    Pierce JE; McDowell JE
    J Neurophysiol; 2016 Feb; 115(2):763-72. PubMed ID: 26609113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional MRI evidence for significant contribution of precentral gyrus to flexible oculomotor control: evidence from the antisaccade task.
    Jin Z; Jin DG; Xiao M; Ding A; Tian J; Zhang J; Li L
    Brain Struct Funct; 2022 Nov; 227(8):2623-2632. PubMed ID: 36048283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontoparietal activation with preparation for antisaccades.
    Brown MR; Vilis T; Everling S
    J Neurophysiol; 2007 Sep; 98(3):1751-62. PubMed ID: 17596416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional MRI mapping of brain activation during visually guided saccades and antisaccades: cortical and subcortical networks.
    Matsuda T; Matsuura M; Ohkubo T; Ohkubo H; Matsushima E; Inoue K; Taira M; Kojima T
    Psychiatry Res; 2004 Jul; 131(2):147-55. PubMed ID: 15313521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oculomotor task switching: alternating from a nonstandard to a standard response yields the unidirectional prosaccade switch-cost.
    Weiler J; Heath M
    J Neurophysiol; 2014 Nov; 112(9):2176-84. PubMed ID: 25122700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contextual effects on cognitive control and BOLD activation in single versus mixed saccade tasks.
    Pierce JE; McDowell JE
    Brain Cogn; 2017 Jul; 115():12-20. PubMed ID: 28371646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decomposing the neural correlates of antisaccade eye movements using event-related FMRI.
    Ettinger U; Ffytche DH; Kumari V; Kathmann N; Reuter B; Zelaya F; Williams SC
    Cereb Cortex; 2008 May; 18(5):1148-59. PubMed ID: 17728263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-irrelevant emotional faces impact BOLD responses more for prosaccades than antisaccades in a mixed saccade fMRI task.
    Pierce JE; Clancy E; Petro NM; Dodd MD; Neta M
    Neuropsychologia; 2022 Dec; 177():108428. PubMed ID: 36414100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facing competition: Neural mechanisms underlying parallel programming of antisaccades and prosaccades.
    Talanow T; Kasparbauer AM; Steffens M; Meyhöfer I; Weber B; Smyrnis N; Ettinger U
    Brain Cogn; 2016 Aug; 107():37-47. PubMed ID: 27363008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisaccade performance predicted by neuronal activity in the supplementary eye field.
    Schlag-Rey M; Amador N; Sanchez H; Schlag J
    Nature; 1997 Nov; 390(6658):398-401. PubMed ID: 9389478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attention allocation before antisaccades.
    Klapetek A; Jonikaitis D; Deubel H
    J Vis; 2016; 16(1):11. PubMed ID: 26790843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping neural dynamics underlying saccade preparation and execution and their relation to reaction time and direction errors.
    Bells S; Isabella SL; Brien DC; Coe BC; Munoz DP; Mabbott DJ; Cheyne DO
    Hum Brain Mapp; 2020 May; 41(7):1934-1949. PubMed ID: 31916374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control.
    Weiler J; Hassall CD; Krigolson OE; Heath M
    Behav Brain Res; 2015 Feb; 278():323-9. PubMed ID: 25453741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-switching in oculomotor control: unidirectional switch-cost when alternating between pro- and antisaccades.
    Weiler J; Heath M
    Neurosci Lett; 2012 Nov; 530(2):150-4. PubMed ID: 23063688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network?
    Alahyane N; Brien DC; Coe BC; Stroman PW; Munoz DP
    Neuroimage; 2014 Sep; 98():103-17. PubMed ID: 24642280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.