These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24137708)

  • 1. Response.
    Kulkarni NM; Uppot RN; Eisner BH; Sahani DV
    Radiology; 2013 Sep; 268(3):926. PubMed ID: 24137708
    [No Abstract]   [Full Text] [Related]  

  • 2. Radiation dose reduction at multidetector CT.
    Li X; Yu Y; Liu B; Qian Y; Zhao R
    Radiology; 2013 Sep; 268(3):925-6. PubMed ID: 23970513
    [No Abstract]   [Full Text] [Related]  

  • 3. Radiation dose reduction at multidetector CT with adaptive statistical iterative reconstruction for evaluation of urolithiasis: how low can we go?
    Kulkarni NM; Uppot RN; Eisner BH; Sahani DV
    Radiology; 2012 Oct; 265(1):158-66. PubMed ID: 22891359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficacy of tin-filtration for computed tomography in diagnosing urolithiasis.
    Tan SLH; Badawy M; Schneider M; Lau KK; Low K; Kutschera P
    Clin Imaging; 2019; 55():126-131. PubMed ID: 30818162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of urolithiasis: comparison of 100% tube exposure images reconstructed with filtered back projection and 50% tube exposure images reconstructed with sinogram-affirmed iterative reconstruction.
    Remer EM; Herts BR; Primak A; Obuchowski NA; Greiwe A; Roesel DM; Purysko AS; Feldman MK; De S; Shah SN; Dong F; Monga M; Baker ME
    Radiology; 2014 Sep; 272(3):749-56. PubMed ID: 24814177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT dose: medical residents take note.
    Slothus RJ
    Radiol Technol; 2010; 82(2):112. PubMed ID: 21048061
    [No Abstract]   [Full Text] [Related]  

  • 7. 256-MDCT for evaluation of urolithiasis: iterative reconstruction allows for a significant reduction of the applied radiation dose while maintaining high subjective and objective image quality.
    Veldhoen S; Laqmani A; Derlin T; Karul M; Hammerle D; Buhk JH; Sehner S; Nagel HD; Chun F; Adam G; Regier M
    J Med Imaging Radiat Oncol; 2014; 58(3):283-90. PubMed ID: 24581030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of 1 mSv urinary tract stone CT with model-based iterative reconstruction.
    Glazer DI; Maturen KE; Cohan RH; Davenport MS; Ellis JH; Knoepp US; Weadock WJ; Platt JF
    AJR Am J Roentgenol; 2014 Dec; 203(6):1230-5. PubMed ID: 25415699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal use of AEC in CT: a literature review.
    Gudjónsdóttir J; Ween B; Olsen DR
    Radiol Technol; 2010; 81(4):309-17. PubMed ID: 20207787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computed tomography dose optimization.
    Seeram E
    Radiol Technol; 2014; 85(6):655CT-671CT; quiz 672CT-675CT. PubMed ID: 25002653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge-based iterative model reconstruction (IMR) algorithm in ultralow-dose CT for evaluation of urolithiasis: evaluation of radiation dose reduction, image quality, and diagnostic performance.
    Park SB; Kim YS; Lee JB; Park HJ
    Abdom Imaging; 2015 Oct; 40(8):3137-46. PubMed ID: 26197735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of optimal imaging settings for urolithiasis CT using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR): a physical human phantom study.
    Choi SY; Ahn SH; Choi JD; Kim JH; Lee BI; Kim JI; Park SB
    Br J Radiol; 2016; 89(1058):20150527. PubMed ID: 26577542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CT radiation dose and iterative reconstruction techniques.
    Padole A; Ali Khawaja RD; Kalra MK; Singh S
    AJR Am J Roentgenol; 2015 Apr; 204(4):W384-92. PubMed ID: 25794087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving forward, faster than ever.
    Budoff M
    J Cardiovasc Comput Tomogr; 2011; 5(2):131-2. PubMed ID: 21477789
    [No Abstract]   [Full Text] [Related]  

  • 15. Model-based iterative reconstruction versus adaptive statistical iterative reconstruction in low-dose abdominal CT for urolithiasis.
    Botsikas D; Stefanelli S; Boudabbous S; Toso S; Becker CD; Montet X
    AJR Am J Roentgenol; 2014 Aug; 203(2):336-40. PubMed ID: 25055268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation dose reduction at CT enterography: How low can we go while preserving diagnostic accuracy?
    Leng S; Yu L; McCollough CH
    AJR Am J Roentgenol; 2010 Jul; 195(1):76-7. PubMed ID: 20566799
    [No Abstract]   [Full Text] [Related]  

  • 17. A new era in computed tomographic dose optimization: the impact of iterative reconstruction on image quality and radiation dose.
    Kordolaimi SD; Argentos S; Pantos I; Kelekis NL; Efstathopoulos EP
    J Comput Assist Tomogr; 2013; 37(6):924-31. PubMed ID: 24270114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Not Available].
    Rofo; 2017 Feb; 189(2):110-111. PubMed ID: 28142168
    [No Abstract]   [Full Text] [Related]  

  • 19. MODEL-BASED ITERATIVE RECONSTRUCTION ENABLES THE EVALUATION OF THIN-SLICE COMPUTED TOMOGRAPHY IMAGES WITHOUT DEGRADING IMAGE QUALITY OR INCREASING RADIATION DOSE.
    Aurumskjöld ML; Ydström K; Tingberg A; Söderberg M
    Radiat Prot Dosimetry; 2016 Jun; 169(1-4):100-6. PubMed ID: 26590394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v.
    Lim K; Kwon H; Cho J; Oh J; Yoon S; Kang M; Ha D; Lee J; Kang E
    J Comput Assist Tomogr; 2015; 39(3):443-8. PubMed ID: 25654782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.