BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

634 related articles for article (PubMed ID: 24138628)

  • 21. Microfluidic liquid chromatography system for proteomic applications and biomarker screening.
    Lazar IM; Trisiripisal P; Sarvaiya HA
    Anal Chem; 2006 Aug; 78(15):5513-24. PubMed ID: 16878890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct bioanalytical sample injection with 2D LC-MS.
    Cassiano N; Barreiro J; Oliveira R; Cass Q
    Bioanalysis; 2012 Nov; 4(22):2737-56. PubMed ID: 23210656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High sensitivity analysis of proteins and peptides by capillary electrophoresis-tandem mass spectrometry: recent developments in technology and applications.
    Figeys D; Aebersold R
    Electrophoresis; 1998 May; 19(6):885-92. PubMed ID: 9638934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative determination of 8-isoprostaglandin F(2α) in human urine using microfluidic chip-based nano-liquid chromatography with on-chip sample enrichment and tandem mass spectrometry.
    Bai HY; Lin SL; Chung YT; Liu TY; Chan SA; Fuh MR
    J Chromatogr A; 2011 Apr; 1218(15):2085-90. PubMed ID: 21081240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Studies on single-cell analysis].
    Cheng J; Huang W; Wang Z
    Se Pu; 2007 Jan; 25(1):1-10. PubMed ID: 17432566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfabricated devices: A new sample introduction approach to mass spectrometry.
    Lazar IM; Grym J; Foret F
    Mass Spectrom Rev; 2006; 25(4):573-94. PubMed ID: 16508917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress and possible applications of miniaturised separation techniques and elemental mass spectrometry for quantitative, heteroatom-tagged proteomics.
    Pröfrock D
    Anal Bioanal Chem; 2010 Nov; 398(6):2383-401. PubMed ID: 20582698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis.
    Mirasoli M; Guardigli M; Michelini E; Roda A
    J Pharm Biomed Anal; 2014 Jan; 87():36-52. PubMed ID: 24268500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contactless conductivity detection for analytical techniques: developments from 2010 to 2012.
    Kubáň P; Hauser PC
    Electrophoresis; 2013 Jan; 34(1):55-69. PubMed ID: 23161279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidics-to-mass spectrometry: a review of coupling methods and applications.
    Wang X; Yi L; Mukhitov N; Schrell AM; Dhumpa R; Roper MG
    J Chromatogr A; 2015 Feb; 1382():98-116. PubMed ID: 25458901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophoretic analysis of N-glycans on microfluidic devices.
    Zhuang Z; Starkey JA; Mechref Y; Novotny MV; Jacobson SC
    Anal Chem; 2007 Sep; 79(18):7170-5. PubMed ID: 17685584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of IgG N-glycans employing a microfluidic chip that integrates glycan cleavage, sample purification, LC separation, and MS detection.
    Bynum MA; Yin H; Felts K; Lee YM; Monell CR; Killeen K
    Anal Chem; 2009 Nov; 81(21):8818-25. PubMed ID: 19807107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic paper-based devices for bioanalytical applications.
    Santhiago M; Nery EW; Santos GP; Kubota LT
    Bioanalysis; 2014 Jan; 6(1):89-106. PubMed ID: 24341497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices.
    Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT
    Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960
    [No Abstract]   [Full Text] [Related]  

  • 40. High-throughput multiplexed capillary electrophoresis in drug discovery.
    Pang HM; Kenseth J; Coldiron S
    Drug Discov Today; 2004 Dec; 9(24):1072-80. PubMed ID: 15582796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.