These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24138846)

  • 1. Operator functional state classification using least-square support vector machine based recursive feature elimination technique.
    Yin Z; Zhang J
    Comput Methods Programs Biomed; 2014; 113(1):101-15. PubMed ID: 24138846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowledge discovery employing grid scheme least squares support vector machines based on orthogonal design bee colony algorithm.
    Hsieh TJ; Yeh WC
    IEEE Trans Syst Man Cybern B Cybern; 2011 Oct; 41(5):1198-212. PubMed ID: 21421446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection.
    Mao Y; Zhou X; Pi D; Sun Y; Wong ST
    J Biomed Biotechnol; 2005 Jun; 2005(2):160-71. PubMed ID: 16046822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving PLS-RFE based gene selection for microarray data classification.
    Wang A; An N; Chen G; Li L; Alterovitz G
    Comput Biol Med; 2015 Jul; 62():14-24. PubMed ID: 25912984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme classification using multiclass support vector machine and feature subset selection.
    Pradhan D; Padhy S; Sahoo B
    Comput Biol Chem; 2017 Oct; 70():211-219. PubMed ID: 28934693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data.
    Zhou X; Tuck DP
    Bioinformatics; 2007 May; 23(9):1106-14. PubMed ID: 17494773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression.
    Ke Y; Qi H; Zhang L; Chen S; Jiao X; Zhou P; Zhao X; Wan B; Ming D
    Int J Psychophysiol; 2015 Nov; 98(2 Pt 1):157-66. PubMed ID: 26493860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information.
    Lin X; Yang F; Zhou L; Yin P; Kong H; Xing W; Lu X; Jia L; Wang Q; Xu G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Dec; 910():149-55. PubMed ID: 22682888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vector-machine-based clustering and classification techniques.
    Yin Z; Zhang J
    Comput Methods Programs Biomed; 2014 Jul; 115(3):119-34. PubMed ID: 24821400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination.
    Yin Z; Wang Y; Liu L; Zhang W; Zhang J
    Front Neurorobot; 2017; 11():19. PubMed ID: 28443015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface.
    Siuly S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):526-38. PubMed ID: 22287252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing multiclass cancer classification to binary by output coding and SVM.
    Shen L; Tan EC
    Comput Biol Chem; 2006 Feb; 30(1):63-71. PubMed ID: 16321568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE.
    Niijima S; Kuhara S
    BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. sEMG-angle estimation using feature engineering techniques for least square support vector machine.
    Gao Y; Luo Y; Zhao J; Li Q
    Technol Health Care; 2019; 27(S1):31-46. PubMed ID: 31045525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering technique-based least square support vector machine for EEG signal classification.
    Siuly ; Li Y; Wen PP
    Comput Methods Programs Biomed; 2011 Dec; 104(3):358-72. PubMed ID: 21168234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study.
    Qureshi MN; Min B; Jo HJ; Lee B
    PLoS One; 2016; 11(8):e0160697. PubMed ID: 27500640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification.
    Yan Z; Wang Z; Xie H
    Comput Methods Programs Biomed; 2008 Jun; 90(3):275-84. PubMed ID: 18295367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonographic feature selection and pattern classification for cervical lymph nodes using support vector machines.
    Zhang J; Wang Y; Dong Y; Wang Y
    Comput Methods Programs Biomed; 2007 Oct; 88(1):75-84. PubMed ID: 17719122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.
    Xie HB; Huang H; Wu J; Liu L
    Physiol Meas; 2015 Feb; 36(2):191-206. PubMed ID: 25571959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.