These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24138852)

  • 1. Mechanical fluidity of fully suspended biological cells.
    Maloney JM; Lehnhardt E; Long AF; Van Vliet KJ
    Biophys J; 2013 Oct; 105(8):1767-77. PubMed ID: 24138852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoenvironmental modulators of fluidity in the suspended biological cell.
    Maloney JM; Van Vliet KJ
    Soft Matter; 2014 Oct; 10(40):8031-42. PubMed ID: 25160132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power-law rheology analysis of cells undergoing micropipette aspiration.
    Zhou EH; Quek ST; Lim CT
    Biomech Model Mechanobiol; 2010 Oct; 9(5):563-72. PubMed ID: 20179987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal stem cell mechanics from the attached to the suspended state.
    Maloney JM; Nikova D; Lautenschläger F; Clarke E; Langer R; Guck J; Van Vliet KJ
    Biophys J; 2010 Oct; 99(8):2479-87. PubMed ID: 20959088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical rheology of biological cells.
    Wottawah F; Schinkinger S; Lincoln B; Ananthakrishnan R; Romeyke M; Guck J; Käs J
    Phys Rev Lett; 2005 Mar; 94(9):098103. PubMed ID: 15784006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A power-law rheology-based finite element model for single cell deformation.
    Zhou EH; Xu F; Quek ST; Lim CT
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1075-84. PubMed ID: 22307682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy.
    Mahaffy RE; Park S; Gerde E; Käs J; Shih CK
    Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple empirical model for identifying rheological properties of soft biological tissues.
    Kobayashi Y; Tsukune M; Miyashita T; Fujie MG
    Phys Rev E; 2017 Feb; 95(2-1):022418. PubMed ID: 28297883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal Variation in Single-Cell Power-Law Rheology Spans the Ensemble Variation of Cell Population.
    Cai P; Takahashi R; Kuribayashi-Shigetomi K; Subagyo A; Sueoka K; Maloney JM; Van Vliet KJ; Okajima T
    Biophys J; 2017 Aug; 113(3):671-678. PubMed ID: 28793221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential mechanical response of mesenchymal stem cells and fibroblasts to tumor-secreted soluble factors.
    McGrail DJ; Ghosh D; Quach ND; Dawson MR
    PLoS One; 2012; 7(3):e33248. PubMed ID: 22438903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying cell-to-cell variation in power-law rheology.
    Cai P; Mizutani Y; Tsuchiya M; Maloney JM; Fabry B; Van Vliet KJ; Okajima T
    Biophys J; 2013 Sep; 105(5):1093-102. PubMed ID: 24010652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the creep compliance of living cells with scanning ion conductance microscopy reveals a subcellular correlation between stiffness and fluidity.
    Rheinlaender J; Schäffer TE
    Nanoscale; 2019 Apr; 11(14):6982-6989. PubMed ID: 30916074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing single suspended cells by optorheology.
    Wottawah F; Schinkinger S; Lincoln B; Ebert S; Müller K; Sauer F; Travis K; Guck J
    Acta Biomater; 2005 May; 1(3):263-71. PubMed ID: 16701805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical response analysis and power generation by single-cell stretching.
    Micoulet A; Spatz JP; Ott A
    Chemphyschem; 2005 Apr; 6(4):663-70. PubMed ID: 15881582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.
    Nawaz S; Sánchez P; Bodensiek K; Li S; Simons M; Schaap IA
    PLoS One; 2012; 7(9):e45297. PubMed ID: 23028915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prestress and Area Compressibility of Actin Cortices Determine the Viscoelastic Response of Living Cells.
    Cordes A; Witt H; Gallemí-Pérez A; Brückner B; Grimm F; Vache M; Oswald T; Bodenschatz J; Flormann D; Lautenschläger F; Tarantola M; Janshoff A
    Phys Rev Lett; 2020 Aug; 125(6):068101. PubMed ID: 32845697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cell density and biomacromolecule addition on the flow behavior of concentrated mesenchymal cell suspensions.
    Maisonneuve BG; Roux DC; Thorn P; Cooper-White JJ
    Biomacromolecules; 2013 Dec; 14(12):4388-97. PubMed ID: 24255972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional viscoelastic model for cell deformation with experimental verification.
    Karcher H; Lammerding J; Huang H; Lee RT; Kamm RD; Kaazempur-Mofrad MR
    Biophys J; 2003 Nov; 85(5):3336-49. PubMed ID: 14581235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.