BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24138865)

  • 1. Structural transitions and energy landscape for Cowpea Chlorotic Mottle Virus capsid mechanics from nanomanipulation in vitro and in silico.
    Kononova O; Snijder J; Brasch M; Cornelissen J; Dima RI; Marx KA; Wuite GJ; Roos WH; Barsegov V
    Biophys J; 2013 Oct; 105(8):1893-903. PubMed ID: 24138865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of nonuniform geometry on nanoindentation of viral capsids.
    Gibbons MM; Klug WS
    Biophys J; 2008 Oct; 95(8):3640-9. PubMed ID: 18621831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of an elastic network augmented coarse grained model to study CCMV capsid deformation.
    Globisch C; Krishnamani V; Deserno M; Peter C
    PLoS One; 2013; 8(4):e60582. PubMed ID: 23613730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the impact of loading rate on the mechanical properties of viral nanoparticles.
    Snijder J; Ivanovska IL; Baclayon M; Roos WH; Wuite GJ
    Micron; 2012 Dec; 43(12):1343-50. PubMed ID: 22609100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear finite-element analysis of nanoindentation of viral capsids.
    Gibbons MM; Klug WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031901. PubMed ID: 17500720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic stability of salt stable cowpea chlorotic mottle virus capsid protein dimers and pentamers of dimers.
    Szoverfi J; Fejer SN
    Sci Rep; 2022 Aug; 12(1):14251. PubMed ID: 35995818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic properties of cowpea chlorotic mottle virus and cucumber mosaic virus capsids.
    Konecny R; Trylska J; Tama F; Zhang D; Baker NA; Brooks CL; McCammon JA
    Biopolymers; 2006 Jun; 82(2):106-20. PubMed ID: 16278831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swelling and softening of the cowpea chlorotic mottle virus in response to pH shifts.
    Wilts BD; Schaap IAT; Schmidt CF
    Biophys J; 2015 May; 108(10):2541-2549. PubMed ID: 25992732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoindentation of virus capsids in a molecular model.
    Cieplak M; Robbins MO
    J Chem Phys; 2010 Jan; 132(1):015101. PubMed ID: 20078182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural transitions in Cowpea chlorotic mottle virus (CCMV).
    Liepold LO; Revis J; Allen M; Oltrogge L; Young M; Douglas T
    Phys Biol; 2005 Nov; 2(4):S166-72. PubMed ID: 16280622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength.
    Michel JP; Ivanovska IL; Gibbons MM; Klug WS; Knobler CM; Wuite GJ; Schmidt CF
    Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6184-9. PubMed ID: 16606825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viral capsid equilibrium dynamics reveals nonuniform elastic properties.
    May ER; Aggarwal A; Klug WS; Brooks CL
    Biophys J; 2011 Jun; 100(11):L59-61. PubMed ID: 21641297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the Initial Steps of Salt-Stable Cowpea Chlorotic Mottle Virus Capsid Assembly with Atomistic Force Fields.
    Antal Z; Szoverfi J; Fejer SN
    J Chem Inf Model; 2017 Apr; 57(4):910-917. PubMed ID: 28383276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry.
    Hommersom CA; Matt B; van der Ham A; Cornelissen JJ; Katsonis N
    Org Biomol Chem; 2014 Jun; 12(24):4065-9. PubMed ID: 24817149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can the RNA of the cowpea chlorotic mottle virus be released through a channel by means of free diffusion? A test in silico.
    Isea R; Aponte C; Cipriani R
    Biophys Chem; 2004 Feb; 107(2):101-6. PubMed ID: 14962592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry.
    van Vlijmen HW; Karplus M
    J Mol Biol; 2005 Jul; 350(3):528-42. PubMed ID: 15922356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic interaction between RNA and protein capsid in cowpea chlorotic mottle virus simulated by a coarse-grain RNA model and a Monte Carlo approach.
    Zhang D; Konecny R; Baker NA; McCammon JA
    Biopolymers; 2004 Nov; 75(4):325-37. PubMed ID: 15386271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effects of mutations and nanoparticle templating in the self-assembly of cowpea chlorotic mottle virus capsids.
    Aniagyei SE; Kennedy CJ; Stein B; Willits DA; Douglas T; Young MJ; De M; Rotello VM; Srisathiyanarayanan D; Kao CC; Dragnea B
    Nano Lett; 2009 Jan; 9(1):393-8. PubMed ID: 19090695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics.
    Speir JA; Bothner B; Qu C; Willits DA; Young MJ; Johnson JE
    J Virol; 2006 Apr; 80(7):3582-91. PubMed ID: 16537626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus.
    Tama F; Brooks CL
    J Mol Biol; 2002 May; 318(3):733-47. PubMed ID: 12054819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.