These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24138868)

  • 1. Sensitivity and robustness in covalent modification cycles with a bifunctional converter enzyme.
    Straube R
    Biophys J; 2013 Oct; 105(8):1925-33. PubMed ID: 24138868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation.
    LaPorte DC; Koshland DE
    Nature; 1983 Sep 22-28; 305(5932):286-90. PubMed ID: 6312317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.
    Straube R
    PLoS Comput Biol; 2014 May; 10(5):e1003614. PubMed ID: 24809699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The isocitrate dehydrogenase phosphorylation cycle: regulation and enzymology.
    LaPorte DC
    J Cell Biochem; 1993 Jan; 51(1):14-8. PubMed ID: 8381789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphatase mechanism of bifunctional kinase/phosphatase AceK.
    Wang S; Shen Q; Chen G; Zheng J; Tan H; Jia Z
    Chem Commun (Camb); 2014 Nov; 50(91):14117-20. PubMed ID: 25272278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operating regimes of covalent modification cycles at high enzyme concentrations.
    Straube R
    J Theor Biol; 2017 Oct; 431():39-48. PubMed ID: 28782551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy expenditure in the control of biochemical systems by covalent modification.
    Goldbeter A; Koshland DE
    J Biol Chem; 1987 Apr; 262(10):4460-71. PubMed ID: 3558349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli.
    Cozzone AJ; El-Mansi M
    J Mol Microbiol Biotechnol; 2005; 9(3-4):132-46. PubMed ID: 16415587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of adenylyltransferase and uridylyltransferase in the regulation of glutamine synthetase in Escherichia coli.
    Rhee SG; Park SC; Koo JH
    Curr Top Cell Regul; 1985; 27():221-32. PubMed ID: 2868842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the reconstituted UTase/UR-PII-NRII-NRI bicyclic signal transduction system that controls the transcription of nitrogen-regulated (Ntr) genes in Escherichia coli.
    Jiang P; Ventura AC; Ninfa AJ
    Biochemistry; 2012 Nov; 51(45):9045-57. PubMed ID: 23088566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase.
    Nimmo GA; Nimmo HG
    Eur J Biochem; 1984 Jun; 141(2):409-14. PubMed ID: 6329757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robustness in glyoxylate bypass regulation.
    Shinar G; Rabinowitz JD; Alon U
    PLoS Comput Biol; 2009 Mar; 5(3):e1000297. PubMed ID: 19266029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isocitrate dehydrogenase kinase/phosphatase exhibits an intrinsic adenosine triphosphatase activity.
    Stueland CS; Eck KR; Stieglbauer KT; LaPorte DC
    J Biol Chem; 1987 Nov; 262(33):16095-9. PubMed ID: 2824478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback.
    Ferrell JE; Ha SH
    Trends Biochem Sci; 2014 Nov; 39(11):556-69. PubMed ID: 25440716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus subtilis isocitrate dehydrogenase. A substrate analogue for Escherichia coli isocitrate dehydrogenase kinase/phosphatase.
    Singh SK; Miller SP; Dean A; Banaszak LJ; LaPorte DC
    J Biol Chem; 2002 Mar; 277(9):7567-73. PubMed ID: 11751849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "catalytic" triad of isocitrate dehydrogenase kinase/phosphatase from E. coli and its relationship with that found in eukaryotic protein kinases.
    Oudot C; Cortay JC; Blanchet C; Laporte DC; Di Pietro A; Cozzone AJ; Jault JM
    Biochemistry; 2001 Mar; 40(10):3047-55. PubMed ID: 11258918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK.
    Zheng J; Yates SP; Jia Z
    Philos Trans R Soc Lond B Biol Sci; 2012 Sep; 367(1602):2656-68. PubMed ID: 22889914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible uridylylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NtrC).
    Atkinson MR; Kamberov ES; Weiss RL; Ninfa AJ
    J Biol Chem; 1994 Nov; 269(45):28288-93. PubMed ID: 7961766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimerization and bifunctionality confer robustness to the isocitrate dehydrogenase regulatory system in Escherichia coli.
    Dexter JP; Gunawardena J
    J Biol Chem; 2013 Feb; 288(8):5770-8. PubMed ID: 23192354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The robustness of the Escherichia coli signal-transducing UTase/UR-PII covalent modification cycle to variation in the PII concentration requires very strong inhibition of the UTase activity of UTase/UR by glutamine.
    Jiang P; Zhang Y; Atkinson MR; Ninfa AJ
    Biochemistry; 2012 Nov; 51(45):9032-44. PubMed ID: 23088522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.