These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 2413889)
1. The tryptophans of gramicidin are essential for the lipid structure modulating effect of the peptide. Killian JA; Timmermans JW; Keur S; de Kruijff B Biochim Biophys Acta; 1985 Oct; 820(1):154-6. PubMed ID: 2413889 [TBL] [Abstract][Full Text] [Related]
2. Phase separation and hexagonal HII phase formation by gramicidins A, B and C in dioleoylphosphatidylcholine model membranes. A study on the role of the tryptophan residues. Killian JA; Burger KN; de Kruijff B Biochim Biophys Acta; 1987 Feb; 897(2):269-84. PubMed ID: 2434129 [TBL] [Abstract][Full Text] [Related]
3. Solvent determined conformation of gramicidin affects the ability of the peptide to induce hexagonal HII phase formation in dioleoylphosphatidylcholine model membranes. Tournois H; Killian JA; Urry DW; Bokking OR; de Gier J; de Kruijff B Biochim Biophys Acta; 1987 Nov; 905(1):222-6. PubMed ID: 2445381 [TBL] [Abstract][Full Text] [Related]
4. The influence of proteins and peptides on the phase properties of lipids. Killian JA; de Kruijff B Chem Phys Lipids; 1986; 40(2-4):259-84. PubMed ID: 2427235 [TBL] [Abstract][Full Text] [Related]
5. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
6. Gramicidin A induced fusion of large unilamellar dioleoylphosphatidylcholine vesicles and its relation to the induction of type II nonbilayer structures. Tournois H; Fabrie CH; Burger KN; Mandersloot J; Hilgers P; van Dalen H; de Gier J; de Kruijff B Biochemistry; 1990 Sep; 29(36):8297-307. PubMed ID: 1701325 [TBL] [Abstract][Full Text] [Related]
7. A mismatch between the length of gramicidin and the lipid acyl chains is a prerequisite for HII phase formation in phosphatidylcholine model membranes. Killian JA; Prasad KU; Urry DW; de Kruijff B Biochim Biophys Acta; 1989 Jan; 978(2):341-5. PubMed ID: 2464375 [TBL] [Abstract][Full Text] [Related]
8. Influence of cholesterol on gramicidin-induced HII phase formation in phosphatidylcholine model membranes. Gasset M; Killian JA; Tournois H; de Kruijff B Biochim Biophys Acta; 1988 Mar; 939(1):79-88. PubMed ID: 2450586 [TBL] [Abstract][Full Text] [Related]
9. Relationship between gramicidin conformation dependent induction of phospholipid transbilayer movement and hexagonal HII phase formation in erythrocyte membranes. Tournois H; Henseleit U; De Gier J; De Kruijff B; Haest CW Biochim Biophys Acta; 1988 Dec; 946(1):173-7. PubMed ID: 2462912 [TBL] [Abstract][Full Text] [Related]
10. Importance of hydration for gramicidin-induced hexagonal HII phase formation in dioleoylphosphatidylcholine model membranes. Killian JA; de Kruijff B Biochemistry; 1985 Dec; 24(27):7890-8. PubMed ID: 2418875 [TBL] [Abstract][Full Text] [Related]
11. Importance of the tryptophans of gramicidin for its lipid structure modulating activity in lysophosphatidylcholine and phosphatidylethanolamine model membranes. A comparative study employing gramicidin analogs and a synthetic alpha-helical hydrophobic polypeptide. Aranda FJ; Killian JA; de Kruijff B Biochim Biophys Acta; 1987 Jul; 901(2):217-28. PubMed ID: 2440475 [TBL] [Abstract][Full Text] [Related]
12. Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes. Tournois H; Leunissen-Bijvelt J; Haest CW; de Gier J; de Kruijff B Biochemistry; 1987 Oct; 26(21):6613-21. PubMed ID: 2447938 [TBL] [Abstract][Full Text] [Related]
13. Synchrotron radiation linear dichroism spectroscopy of the antibiotic peptide gramicidin in lipid membranes. Hicks MR; Dafforn TR; Damianoglou A; Wormell P; Rodger A; Hoffmann SV Analyst; 2009 Aug; 134(8):1623-8. PubMed ID: 20448930 [TBL] [Abstract][Full Text] [Related]
14. Hydrophobic mismatch in gramicidin A'/lecithin systems. Watnick PI; Chan SI; Dea P Biochemistry; 1990 Jul; 29(26):6215-21. PubMed ID: 1698451 [TBL] [Abstract][Full Text] [Related]
15. Interfacial properties of gramicidin and gramicidin-lipid mixtures measured with static and dynamic monolayer techniques. Tournois H; Gieles P; Demel R; de Gier J; de Kruijff B Biophys J; 1989 Mar; 55(3):557-69. PubMed ID: 2467699 [TBL] [Abstract][Full Text] [Related]
16. Motionally restricted tryptophan environments at the peptide-lipid interface of gramicidin channels. Mukherjee S; Chattopadhyay A Biochemistry; 1994 May; 33(17):5089-97. PubMed ID: 7513554 [TBL] [Abstract][Full Text] [Related]
17. 2H-nuclear magnetic resonance investigations on phospholipid acyl chain order and dynamics in the gramicidin-induced hexagonal HII phase. Chupin V; Killian JA; de Kruijff B Biophys J; 1987 Mar; 51(3):395-405. PubMed ID: 2436677 [TBL] [Abstract][Full Text] [Related]
18. Conformational analysis of gramicidin-gramicidin interactions at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase. Brasseur R; Killian JA; De Kruijff B; Ruysschaert JM Biochim Biophys Acta; 1987 Sep; 903(1):11-7. PubMed ID: 2443166 [TBL] [Abstract][Full Text] [Related]
19. Interrelationships between tyrocidine and gramicidin A' in their interaction with phospholipids in model membranes. Aranda FJ; de Kruijff B Biochim Biophys Acta; 1988 Jan; 937(1):195-203. PubMed ID: 2446665 [TBL] [Abstract][Full Text] [Related]
20. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]