These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24139025)

  • 41. Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex.
    Zhong LR; Chen X; Park E; Südhof TC; Chen L
    J Neurosci; 2018 Dec; 38(49):10454-10466. PubMed ID: 30355624
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensory modality-specific homeostatic plasticity in the developing optic tectum.
    Deeg KE; Aizenman CD
    Nat Neurosci; 2011 May; 14(5):548-50. PubMed ID: 21441922
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene expression patterns underlying the reinstatement of plasticity in the adult visual system.
    Tiraboschi E; Guirado R; Greco D; Auvinen P; Maya-Vetencourt JF; Maffei L; Castrén E
    Neural Plast; 2013; 2013():605079. PubMed ID: 23936678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex.
    Kuhlman SJ; Olivas ND; Tring E; Ikrar T; Xu X; Trachtenberg JT
    Nature; 2013 Sep; 501(7468):543-6. PubMed ID: 23975100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hebbian and Homeostatic Plasticity Mechanisms in Regular Spiking and Intrinsic Bursting Cells of Cortical Layer 5.
    Greenhill SD; Ranson A; Fox K
    Neuron; 2015 Nov; 88(3):539-52. PubMed ID: 26481037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics.
    Wu YK; Hengen KB; Turrigiano GG; Gjorgjieva J
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24514-24525. PubMed ID: 32917810
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex.
    Gao M; Sossa K; Song L; Errington L; Cummings L; Hwang H; Kuhl D; Worley P; Lee HK
    J Neurosci; 2010 May; 30(21):7168-78. PubMed ID: 20505084
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Homeostatic regulation through strengthening of neuronal network-correlated synaptic inputs.
    Barnes SJ; Keller GB; Keck T
    Elife; 2022 Dec; 11():. PubMed ID: 36515269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice.
    Hensch TK; Gordon JA; Brandon EP; McKnight GS; Idzerda RL; Stryker MP
    J Neurosci; 1998 Mar; 18(6):2108-17. PubMed ID: 9482797
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thalamic activity that drives visual cortical plasticity.
    Linden ML; Heynen AJ; Haslinger RH; Bear MF
    Nat Neurosci; 2009 Apr; 12(4):390-2. PubMed ID: 19252494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuronal Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake.
    Hengen KB; Torrado Pacheco A; McGregor JN; Van Hooser SD; Turrigiano GG
    Cell; 2016 Mar; 165(1):180-191. PubMed ID: 26997481
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Early retinal activity and visual circuit development.
    Del Rio T; Feller MB
    Neuron; 2006 Oct; 52(2):221-2. PubMed ID: 17046683
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus.
    Cai Y; Gavornik JP; Cooper LN; Yeung LC; Shouval HZ
    J Neurophysiol; 2007 Jan; 97(1):375-86. PubMed ID: 17035360
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD.
    Binda P; Kurzawski JW; Lunghi C; Biagi L; Tosetti M; Morrone MC
    Elife; 2018 Nov; 7():. PubMed ID: 30475210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [An ultrastructural analysis of synaptic plasticity during limitation of the sensory input].
    Petrova LP
    Zh Evol Biokhim Fiziol; 1993; 29(3):304-8. PubMed ID: 8259739
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuronal integration of synaptic input in the fluctuation-driven regime.
    Kuhn A; Aertsen A; Rotter S
    J Neurosci; 2004 Mar; 24(10):2345-56. PubMed ID: 15014109
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experience-dependent intrinsic plasticity in interneurons of barrel cortex layer IV.
    Sun QQ
    J Neurophysiol; 2009 Nov; 102(5):2955-73. PubMed ID: 19741102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BACE1 is necessary for experience-dependent homeostatic synaptic plasticity in visual cortex.
    Petrus E; Lee HK
    Neural Plast; 2014; 2014():128631. PubMed ID: 24963413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.