These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24139025)

  • 61. Temporally coherent visual stimuli boost ocular dominance plasticity.
    Matthies U; Balog J; Lehmann K
    J Neurosci; 2013 Jul; 33(29):11774-8. PubMed ID: 23864666
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Experience-dependent homeostasis of 'noise' at inhibitory synapses preserves information coding in adult visual cortex.
    Gao M; Whitt JL; Huang S; Lee A; Mihalas S; Kirkwood A; Lee HK
    Philos Trans R Soc Lond B Biol Sci; 2017 Mar; 372(1715):. PubMed ID: 28093550
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Current compensation in neuronal homeostasis.
    Marder E; Prinz AA
    Neuron; 2003 Jan; 37(1):2-4. PubMed ID: 12526765
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Heterosynaptic plasticity prevents runaway synaptic dynamics.
    Chen JY; Lonjers P; Lee C; Chistiakova M; Volgushev M; Bazhenov M
    J Neurosci; 2013 Oct; 33(40):15915-29. PubMed ID: 24089497
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cortical plasticity: learning while you sleep?
    Sengpiel F
    Curr Biol; 2001 Aug; 11(16):R647-50. PubMed ID: 11525757
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Two distinct mechanisms for experience-dependent homeostasis.
    Bridi MCD; de Pasquale R; Lantz CL; Gu Y; Borrell A; Choi SY; He K; Tran T; Hong SZ; Dykman A; Lee HK; Quinlan EM; Kirkwood A
    Nat Neurosci; 2018 Jun; 21(6):843-850. PubMed ID: 29760525
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Refinement but not maintenance of visual receptive fields is independent of visual experience.
    Balmer TS; Pallas SL
    Cereb Cortex; 2015 Apr; 25(4):904-17. PubMed ID: 24108803
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Experience-Dependent Development of Feature-Selective Synchronization in the Primary Visual Cortex.
    Ishikawa AW; Komatsu Y; Yoshimura Y
    J Neurosci; 2018 Sep; 38(36):7852-7869. PubMed ID: 30064994
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.
    Goel A; Xu LW; Snyder KP; Song L; Goenaga-Vazquez Y; Megill A; Takamiya K; Huganir RL; Lee HK
    PLoS One; 2011 Mar; 6(3):e18264. PubMed ID: 21483826
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Inhibition of Cdk5 rejuvenates inhibitory circuits and restores experience-dependent plasticity in adult visual cortex.
    Li Y; Wang L; Zhang X; Huang M; Li S; Wang X; Chen L; Jiang B; Yang Y
    Neuropharmacology; 2018 Jan; 128():207-220. PubMed ID: 29031852
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Visual acuity development and plasticity in the absence of sensory experience.
    Kang E; Durand S; LeBlanc JJ; Hensch TK; Chen C; Fagiolini M
    J Neurosci; 2013 Nov; 33(45):17789-96. PubMed ID: 24198369
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A circuit mechanism for independent modulation of excitatory and inhibitory firing rates after sensory deprivation.
    Richter LMA; Gjorgjieva J
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2116895119. PubMed ID: 35925891
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Neuronal homeostasis: does form follow function or vice versa?
    Bucher D
    Curr Biol; 2009 Jan; 19(2):R64-7. PubMed ID: 19174140
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Homeostatic recovery of downstate-upstate cycling in nucleus accumbens neurons.
    Lee BR; Mu P; Saal DB; Ulibarri C; Dong Y
    Neurosci Lett; 2008 Apr; 434(3):282-8. PubMed ID: 18329805
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plasticity in the visual system: role of neurotrophins and electrical activity.
    Maffei L
    Arch Ital Biol; 2002 Oct; 140(4):341-6. PubMed ID: 12228987
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Adenosine Shifts Plasticity Regimes between Associative and Homeostatic by Modulating Heterosynaptic Changes.
    Bannon NM; Chistiakova M; Chen JY; Bazhenov M; Volgushev M
    J Neurosci; 2017 Feb; 37(6):1439-1452. PubMed ID: 28028196
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regulation of synaptic scaling by action potential-independent miniature neurotransmission.
    Gonzalez-Islas C; Bülow P; Wenner P
    J Neurosci Res; 2018 Mar; 96(3):348-353. PubMed ID: 28782263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.