These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24139059)

  • 1. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells.
    Tan F; Qu S; Li F; Jiang Q; Chen C; Zhang W; Wang Z
    Nanoscale Res Lett; 2013 Oct; 8(1):434. PubMed ID: 24139059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
    Tan F; Qu S; Zhang W; Wang Z
    Nanoscale Res Lett; 2014; 9(1):593. PubMed ID: 25386107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.
    Xu W; Tan F; Liu X; Zhang W; Qu S; Wang Z; Wang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):11. PubMed ID: 28058645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ternary hybrid systems of P3HT-CdSe-WS₂ nanotubes for photovoltaic applications.
    Bruno A; Borriello C; Haque SA; Minarini C; Di Luccio T
    Phys Chem Chem Phys; 2014 Sep; 16(33):17998-8003. PubMed ID: 25050744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design Strategy of Quantum Dot Thin-Film Solar Cells.
    Kim T; Lim S; Yun S; Jeong S; Park T; Choi J
    Small; 2020 Nov; 16(45):e2002460. PubMed ID: 33079485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inverted ZnO/P3HT:PbS bulk-heterojunction hybrid solar cell with a CdSe quantum dot interface buffer layer.
    Thomas A; Vinayakan R; Ison VV
    RSC Adv; 2020 Apr; 10(28):16693-16699. PubMed ID: 35498855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals.
    Saha SK; Bera A; Pal AJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced charge transfer kinetics of CdSe quantum dot-sensitized solar cell by inorganic ligand exchange treatments.
    Yun HJ; Paik T; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3721-8. PubMed ID: 24447012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.
    Chang J; Ogomi Y; Ding C; Zhang YH; Toyoda T; Hayase S; Katayama K; Shen Q
    Phys Chem Chem Phys; 2017 Mar; 19(9):6358-6367. PubMed ID: 27901148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems.
    McGranahan CR; Wolfe GE; Falca A; Watson DF
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30980-30991. PubMed ID: 34156237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture.
    Hu L; Zhao Q; Huang S; Zheng J; Guan X; Patterson R; Kim J; Shi L; Lin CH; Lei Q; Chu D; Tao W; Cheong S; Tilley RD; Ho-Baillie AWY; Luther JM; Yuan J; Wu T
    Nat Commun; 2021 Jan; 12(1):466. PubMed ID: 33473106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.
    Yun HJ; Paik T; Diroll B; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14692-700. PubMed ID: 27224958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells.
    Ren Z; Yu J; Pan Z; Wang J; Zhong X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Inverted Perovskite Solar Cells with CdSe QDs/LiF Electron Transporting Layer.
    Tan F; Xu W; Hu X; Yu P; Zhang W
    Nanoscale Res Lett; 2017 Dec; 12(1):614. PubMed ID: 29214502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.
    Lee H; Wang M; Chen P; Gamelin DR; Zakeeruddin SM; Grätzel M; Nazeeruddin MK
    Nano Lett; 2009 Dec; 9(12):4221-7. PubMed ID: 19891465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells.
    Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.
    Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z
    Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells.
    Mahajan C; Sharma A; Rath AK
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.