BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24139059)

  • 1. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells.
    Tan F; Qu S; Li F; Jiang Q; Chen C; Zhang W; Wang Z
    Nanoscale Res Lett; 2013 Oct; 8(1):434. PubMed ID: 24139059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
    Tan F; Qu S; Zhang W; Wang Z
    Nanoscale Res Lett; 2014; 9(1):593. PubMed ID: 25386107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.
    Xu W; Tan F; Liu X; Zhang W; Qu S; Wang Z; Wang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):11. PubMed ID: 28058645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ternary hybrid systems of P3HT-CdSe-WS₂ nanotubes for photovoltaic applications.
    Bruno A; Borriello C; Haque SA; Minarini C; Di Luccio T
    Phys Chem Chem Phys; 2014 Sep; 16(33):17998-8003. PubMed ID: 25050744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design Strategy of Quantum Dot Thin-Film Solar Cells.
    Kim T; Lim S; Yun S; Jeong S; Park T; Choi J
    Small; 2020 Nov; 16(45):e2002460. PubMed ID: 33079485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inverted ZnO/P3HT:PbS bulk-heterojunction hybrid solar cell with a CdSe quantum dot interface buffer layer.
    Thomas A; Vinayakan R; Ison VV
    RSC Adv; 2020 Apr; 10(28):16693-16699. PubMed ID: 35498855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals.
    Saha SK; Bera A; Pal AJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced charge transfer kinetics of CdSe quantum dot-sensitized solar cell by inorganic ligand exchange treatments.
    Yun HJ; Paik T; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3721-8. PubMed ID: 24447012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.
    Chang J; Ogomi Y; Ding C; Zhang YH; Toyoda T; Hayase S; Katayama K; Shen Q
    Phys Chem Chem Phys; 2017 Mar; 19(9):6358-6367. PubMed ID: 27901148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems.
    McGranahan CR; Wolfe GE; Falca A; Watson DF
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30980-30991. PubMed ID: 34156237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture.
    Hu L; Zhao Q; Huang S; Zheng J; Guan X; Patterson R; Kim J; Shi L; Lin CH; Lei Q; Chu D; Tao W; Cheong S; Tilley RD; Ho-Baillie AWY; Luther JM; Yuan J; Wu T
    Nat Commun; 2021 Jan; 12(1):466. PubMed ID: 33473106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.
    Yun HJ; Paik T; Diroll B; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14692-700. PubMed ID: 27224958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells.
    Ren Z; Yu J; Pan Z; Wang J; Zhong X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Inverted Perovskite Solar Cells with CdSe QDs/LiF Electron Transporting Layer.
    Tan F; Xu W; Hu X; Yu P; Zhang W
    Nanoscale Res Lett; 2017 Dec; 12(1):614. PubMed ID: 29214502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.
    Lee H; Wang M; Chen P; Gamelin DR; Zakeeruddin SM; Grätzel M; Nazeeruddin MK
    Nano Lett; 2009 Dec; 9(12):4221-7. PubMed ID: 19891465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells.
    Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.
    Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z
    Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells.
    Mahajan C; Sharma A; Rath AK
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.