BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 2413919)

  • 1. Nuclear magnetic resonance of 23Na ions interacting with the gramicidin channel.
    Monoi H
    Biophys J; 1985 Oct; 48(4):643-62. PubMed ID: 2413919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of channel formation of gramicidins A and B in phospholipid vesicle membranes.
    Easton PL; Hinton JF; Newkirk DK
    Biophys J; 1990 Jan; 57(1):63-9. PubMed ID: 1688716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The determination of binding constants of micellar-packaged gramicidin A by 13C-and 23Na-NMR.
    Jing N; Prasad KU; Urry DW
    Biochim Biophys Acta; 1995 Aug; 1238(1):1-11. PubMed ID: 7544622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+ interacting with gramicidin D. A nuclear magnetic resonance study.
    Monoi H; Uedaira H
    Biophys J; 1979 Mar; 25(3):535-40. PubMed ID: 95566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 23Na-nuclear magnetic resonance investigation of gramicidin-induced ion transport through membranes under equilibrium conditions.
    Buster DC; Hinton JF; Millett FS; Shungu DC
    Biophys J; 1988 Feb; 53(2):145-52. PubMed ID: 2449917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium binding sites of gramicidin A: sodium-23 nuclear magnetic resonance study.
    Cornélis A; Laszlo P
    Biochemistry; 1979 May; 18(10):2004-7. PubMed ID: 86363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium binding constants for the group I metal cations with gramicidin-A determined by competition studies and T1+-205 nuclear magnetic resonance spectroscopy.
    Hinton JF; Whaley WL; Shungu D; Koeppe RE; Millett FS
    Biophys J; 1986 Sep; 50(3):539-44. PubMed ID: 2428415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic interactions and anion binding in the gramicidin channel. An electrostatic calculation.
    Monoi H
    J Theor Biol; 1983 May; 102(1):69-99. PubMed ID: 6192290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium-39 NMR of K+ interaction with the gramicidin channel and NMR-derived conductance ratios for Na+, K+ and Rb+.
    Urry DW; Trapane TL; Venkatachalam CM
    J Membr Biol; 1986; 89(1):107-11. PubMed ID: 2420992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The malonyl gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single-channel currents.
    Urry DW; Venkatachalam CM; Spisni A; Bradley RJ; Trapane TL; Prasad KU
    J Membr Biol; 1980 Jun; 55(1):29-51. PubMed ID: 6157028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate theory calculation of gramicidin single-channel currents using NMR-derived rate constants.
    Urry DW; Venkatachalam CM; Spisni A; Läuger P; Khaled MA
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2028-32. PubMed ID: 6154942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of gramicidin A open channel lifetime by ion occupancy.
    Ring A; Sandblom J
    Biophys J; 1988 Apr; 53(4):549-59. PubMed ID: 2454677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of intracellular 23Na relaxation using the double-quantum filtered NMR signal from the perfused rat salivary gland.
    Seo Y; Rooney WD; Murakami M
    Biochim Biophys Acta; 1993 Jun; 1177(2):111-6. PubMed ID: 8499483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.
    Roux B; Prod'hom B; Karplus M
    Biophys J; 1995 Mar; 68(3):876-92. PubMed ID: 7538804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of an N-methylated polyamine analogue, hexamethonium(2+), with NaDNA: quantitative 14N and 23Na NMR relaxation rate studies of the cation-exchange process.
    Padmanabhan S; Richey B; Anderson CF; Record MT
    Biochemistry; 1988 Jun; 27(12):4367-76. PubMed ID: 2901852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct NMR detection of alkali metal ions bound to G-quadruplex DNA.
    Ida R; Wu G
    J Am Chem Soc; 2008 Mar; 130(11):3590-602. PubMed ID: 18293981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of alkaline cations to the double-helical form of gramicidin.
    Chen Y; Wallace BA
    Biophys J; 1996 Jul; 71(1):163-70. PubMed ID: 8804600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-23 and potassium-39 nuclear magnetic resonance relaxation in eye lens. Examples of quadrupole ion magnetic relaxation in a crowded protein environment.
    Stevens A; Paschalis P; Schleich T
    Biophys J; 1992 May; 61(5):1061-75. PubMed ID: 1600073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding constants of Li+, K+, and Tl+ in the gramicidin channel determined from water permeability measurements.
    Dani JA; Levitt DG
    Biophys J; 1981 Aug; 35(2):485-99. PubMed ID: 6168310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance of tissue 23Na. Correlation time.
    Monoi H
    Biochim Biophys Acta; 1976 Dec; 451(2):604-9. PubMed ID: 999872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.