These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24139301)

  • 1. Application of a micro-Brillouin scattering technique to characterize bone in the GHz range.
    Matsukawa M; Tsubota R; Kawabe M; Fukui K
    Ultrasonics; 2014 Jul; 54(5):1155-61. PubMed ID: 24139301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative investigation of elastic properties in a trabecula using micro-Brillouin scattering and scanning acoustic microscopy.
    Kawabe M; Fukui K; Matsukawa M; Granke M; Saïed A; Grimal Q; Laugier P
    J Acoust Soc Am; 2012 Jul; 132(1):EL54-60. PubMed ID: 22779573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bone quantitative ultrasound].
    Matsukawa M
    Clin Calcium; 2016 Jan; 26(1):57-64. PubMed ID: 26728531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-Brillouin scattering measurements in mature and newly formed bone tissue surrounding an implant.
    Mathieu V; Fukui K; Matsukawa M; Kawabe M; Vayron R; Soffer E; Anagnostou F; Haiat G
    J Biomech Eng; 2011 Feb; 133(2):021006. PubMed ID: 21280878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microelastic imaging of bone.
    Raum K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1417-31. PubMed ID: 18986931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the elasticity coefficient for a single trabecula of a cancellous bone: scanning acoustic microscopy approach.
    Litniewski J
    Ultrasound Med Biol; 2005 Oct; 31(10):1361-6. PubMed ID: 16223639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of compact hard tissues and collagen by means of Brillouin light scattering.
    Lees S; Tao NJ; Lindsay SM
    Connect Tissue Res; 1990; 24(3-4):187-205. PubMed ID: 2376122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Birefringence-induced phase delay enables Brillouin mechanical imaging in turbid media.
    Antonacci G; Vanna R; Ventura M; Schiavone ML; Sobacchi C; Behrouzitabar M; Polli D; Manzoni C; Cerullo G
    Nat Commun; 2024 Jun; 15(1):5202. PubMed ID: 38898004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of reflection and transmission ultrasonic techniques for measurement of cancellous bone elasticity.
    Ashman RB; Antich PP; Gonzales J; Anderson JA; Rho JY
    J Biomech; 1994 Sep; 27(9):1195-9. PubMed ID: 7929470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of elastic coefficients of bone and composite materials by acoustic immersion technique.
    Goldmann T; Seiner H; Landa M
    Technol Health Care; 2006; 14(4-5):219-32. PubMed ID: 17065745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of mechanical properties of bone material in vitro by ultrasound reflection: methodology and comparison with ultrasound transmission.
    Antich PP; Anderson JA; Ashman RB; Dowdey JE; Gonzales J; Murry RC; Zerwekh JE; Pak CY
    J Bone Miner Res; 1991 Apr; 6(4):417-26. PubMed ID: 1858525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of induced longitudinal and shear acoustic phonons by Brillouin scattering.
    Yoshida T; Matsukawa M; Yanagitani T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1255-60. PubMed ID: 21693407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local ultrasonic wave velocities in trabeculae measured by micro-Brillouin scattering.
    Tsubota R; Fukui K; Matsukawa M
    J Acoust Soc Am; 2014 Feb; 135(2):EL109-14. PubMed ID: 25234913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound and the biomechanical competence of bone.
    Nicholson PF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1539-45. PubMed ID: 18986944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization.
    Parnell WJ; Grimal Q
    J R Soc Interface; 2009 Jan; 6(30):97-109. PubMed ID: 18628200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave velocities in articular cartilage measured by micro-Brillouin scattering technique.
    Kawase M; Yasui H; Shibagaki Y; Kawabe M; Matsukawa M
    J Acoust Soc Am; 2018 Dec; 144(6):EL492. PubMed ID: 30599656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic scattering from cancellous bone: a review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1432-41. PubMed ID: 18986932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine (RDX) determined by Brillouin scattering.
    Haycraft JJ; Stevens LL; Eckhardt CJ
    J Chem Phys; 2006 Jan; 124(2):024712. PubMed ID: 16422631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of material elastic constants of trabecular bone: a micromechanical analytic study using a 1 GHz acoustic microscope.
    Jørgensen CS; Kundu T
    J Orthop Res; 2002 Jan; 20(1):151-8. PubMed ID: 11853082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.