These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24139311)

  • 1. Ultrastructural immunolocalization of chatelicidin-like peptides in granulocytes of normal and regenerating lizard tissues.
    Alibardi L
    Acta Histochem; 2014 Mar; 116(2):363-71. PubMed ID: 24139311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural immunolocalization of beta-defensin-27 in granulocytes of the dermis and wound epidermis of lizard suggests they contribute to the anti-microbial skin barrier.
    Alibardi L
    Anat Cell Biol; 2013 Dec; 46(4):246-53. PubMed ID: 24386597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Granulocytes of reptilian sauropsids contain beta-defensin-like peptides: a comparative ultrastructural survey.
    Alibardi L
    J Morphol; 2013 Aug; 274(8):877-86. PubMed ID: 23553853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunocytochemical detection of beta-defensins and cathelicidins in the secretory granules of the tongue in the lizard Anolis carolinensis.
    Alibardi L
    Acta Histochem; 2015 Apr; 117(3):223-7. PubMed ID: 25744089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunolocalization of FGF7 (KGF) in the regenerating tail of lizard suggests it is involved in the differentiation of the epidermis.
    Alibardi L
    Acta Histochem; 2015 Oct; 117(8):718-24. PubMed ID: 26508592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunolocalization of loricrin in the maturing α-layer of normal and regenerating epidermis of the lizard Anolis carolinensis.
    Alibardi L; Strasser B; Eckhart L
    J Exp Zool B Mol Dev Evol; 2015 Mar; 324(2):159-67. PubMed ID: 25690302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wound keratins in the regenerating epidermis of lizard suggest that the wound reaction is similar in the tail and limb.
    Alibardi L; Toni M
    J Exp Zool A Comp Exp Biol; 2005 Oct; 303(10):845-60. PubMed ID: 16161012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wounding in lizards results in the release of beta-defensins at the wound site and formation of an antimicrobial barrier.
    Alibardi L; Celeghin A; Dalla Valle L
    Dev Comp Immunol; 2012 Mar; 36(3):557-65. PubMed ID: 22001772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural immunolocalization of nestin in the regenerating tail of lizards shows its presence during cytoskeletal modifications in the epidermis, muscles and nerves.
    Alibardi L
    Tissue Cell; 2015 Apr; 47(2):178-85. PubMed ID: 25728193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunolocalization of a beta-defensin (Tu-BD-1) in the skin and subdermal granulocytes of turtles indicate the presence of an antimicrobial skin barrier.
    Lorenzo A
    Ann Anat; 2013 Dec; 195(6):554-61. PubMed ID: 23993456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunolocalization of Nestin in the lizard Podarcis muralis indicates up-regulation during the process of tail regeneration and epidermal differentiation.
    Alibardi L
    Ann Anat; 2014 May; 196(2-3):135-43. PubMed ID: 24398158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light and electron microscopical localization of filagrin-like immunoreactivity in normal and regenerating epidermis of the lizard Podarcis muralis.
    Alibardi L
    Acta Histochem; 2000 Nov; 102(4):453-73. PubMed ID: 11145537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunolocalization indicates that both original and regenerated lizard tail tissues contain populations of long retaining cells, putative stem/progenitor cells.
    Alibardi L
    Microsc Res Tech; 2015 Nov; 78(11):1032-45. PubMed ID: 26415629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural immunocytochemistry suggests that periderm granules in embryonic chick epidermis contain beta-defensins.
    Alibardi L
    Acta Histochem; 2014 Jun; 116(5):943-8. PubMed ID: 24746607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histochemical, Biochemical and Cell Biological aspects of tail regeneration in lizard, an amniote model for studies on tissue regeneration.
    Alibardi L
    Prog Histochem Cytochem; 2014 Jan; 48(4):143-244. PubMed ID: 24387878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt-1 immunodetection in the regenerating tail of lizard suggests it is involved in the proliferation and distal growth of the blastema.
    Alibardi L
    Acta Histochem; 2017 Apr; 119(3):211-219. PubMed ID: 28233575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunolocalization of Wnts in the lizard blastema supports a key role of these signaling proteins for tail regeneration.
    Alibardi L
    J Morphol; 2020 Jan; 281(1):68-80. PubMed ID: 31721289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunolocalization of the telomerase-1 component in cells of the regenerating tail, testis, and intestine of lizards.
    Alibardi L
    J Morphol; 2015 Jul; 276(7):748-58. PubMed ID: 25712511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell culture from lizard skin: a tool for the study of epidermal differentiation.
    Polazzi E; Alibardi L
    Tissue Cell; 2011 Dec; 43(6):350-8. PubMed ID: 21872288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunolocalization of FGF1 and FGF2 in the regenerating tail of the lizard Lampropholis guichenoti: implications for FGFs as trophic factors in lizard tail regeneration.
    Alibardi L; Lovicu FJ
    Acta Histochem; 2010 Sep; 112(5):459-73. PubMed ID: 19589562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.